

Идеи и методы физики конденсированного состояния XIV Школа-конференция молодых ученых "Проблемы физики твердого тела и высоких давлений" Сочи, 11-20 сентября 2015г.

ОПТИЧЕСКАЯ ДИАГНОСТИКА МОНОКРИСТАЛЛОВ RM3(BO3)4

Институт спектроскопии РАН, Москва, Троицк

Объекты исследования RM₃(BO₃)₄

Хорошие лазерные кристаллы

C

Ш

Z

5

Đ,

Ľ

П

Z

•Превосходные люминесцентные и нелинейнооптические свойства, термическая и химическая стойкость, высокая механическая прочность, широкая запрещенная зона

•Гигантский магнитоэлектрический эффект в HoAl₃(BO₃)₄ и HoGa₃(BO₃)₄ (5000 и 1000 мкКл/м² при 70 кэ, соответственно)

Мультиферроики, перспективные материалы для устройств спинтроники

•Две взаимодействующие магнитные подсистемы R³⁺ и Fe³⁺(Cr³⁺)

•Серии фазовых переходов. Для GdFe₃(BO₃)₄ BT структурный R32 \rightarrow P3₁21 (150K), HT антиферромагнитный (40K), спинпереориентационный (8K). В SmCr₃(BO₃)₄ – три фазовых перехода магнитной природы ниже 10 K.

•Спонтанная поляризация и значительный магнитоэлектрический эффект (максимальное значение 400 мкКл/м² при 10 кэ в SmFe₃(BO₃)₄)

Проблема: рост монокристаллов!

Неконгруэнтность и высокая температура плавления

Необходимость использования растворителя для понижения температуры расплава

Рост монокристаллов возможен только растворрасплавным методом, с использованием различных растворителей

*Альтернатива есть - твердофазный синтез, но дает только поликристаллические образцы

Спектроскопический метод анализа (эксперимент)

Общий вид сцектрометра Bruker IFS 125HR

Криостат замкнутого цикла CryoMech ST 403 Спектральная область: 12 – 25000 см⁻¹ Разрешение: 0.05 – 1 см⁻¹ Температурный диапазон: 3 – 300 К Пе Микр

Поляризационный Микроскоп Olympus SZX7

Спектр поглощения Yb³⁺ в различных алюмоборатах

основной 0-0 наблюдались узкие спутники (ширина до

Было замечено, что интенсивность спутников не зависит от концентрации Yb³⁺, ИХ нельзя К парным центрам иттербия.

Иттербиевый спектроскопический зонд в *R*Al₃(BO₃)₄, R=Y, Tm, Yb, Lu, Gd

Монокристаллы *R*AB:Yb, где R = Y, Yb, Tm, Lu, Gd, были выращены при помощи раствор-расплавного метода. Мы провели исследования кристаллов YAB:Yb crystals, выращенных пятью разными способами: $1.Bi_2Mo_3O_{12} + 2B_2O_3 + 0.5Li_2MoO_4$ $2.Bi_2Mo_3O_{12} + 2B_2O_3 + 0.5Li_2MoO_4$ с избытком Bi_2O_3 (5%) $3.Bi_2Mo_3O_{12} + 2B_2O_3 + 0.5Li_2MoO_4$ с избытком MoO_3 (5%) $4.K_2Mo_3O_{10} + 2B_2O_3 + 0.5Li_2MoO_4$ (выращены в трех различных лабораториях) $5.LaB_3O_6$

Спектр поглощения Yb³⁺ в YAl₃(BO₃)₄:Yb, выращенных с использованием различных растворителей

*J. Phys.: Cond. Matter 20, 45, (2008), *Popova M.N., Boldyrev K.N., Petit P.O., Viana B., Bezmaternykh L.N.* **High-resolution spectroscopy of YbAl**₃(**BO**₃)₄ **stoichiometric nonlinear laser crystals**

ОЭС спектроскопия: Ві, Мо

Оптический атомный эмиссионный анализ (Прибор изготовлен в Институте спектроскопии РАН, Россия):

OES-спектрометр PAPUAS-4 DI Спектральный диапазон – 210-410 nm Спектральное разрешение – 0.09 nm Возбуждение – искра, электрическая дуга

Концентрации Bi³⁺ и Mo³⁺ в RAl₃(BO₃)₄

	No	Sample	Solvent	$\sigma_{int} [\text{Yb}^{3+}(\text{Bi}^{3+})]$	$\sigma_{int} [Yb^{3+}(Mo^{3+})]$	Growth lab
_	1	YAl ₃ (BO ₃) ₄ :Yb(7%)	Bi ₂ Mo ₃ O ₁₂	7.5	<1	KIP
	2	YAl ₃ (BO ₃) ₄ :Yb(7%)	$Bi_2Mo_3O_{12} + 0.05 Bi_2O_3$	26.2	<1	KIP
	3	YAl ₃ (BO ₃) ₄ :Yb(7%)	Bi ₂ Mo ₃ O ₁₂ + 0.15 MoO ₃	<0.1	34	KIP
	4	YAl ₃ (BO ₃) ₄ :Yb(10%) Tm(5%)	Bi ₂ Mo ₃ O ₁₂	0.7	<1	KIP
_	5	TmAl ₃ (BO ₃) ₄ :Yb(10%)	Bi ₂ Mo ₃ O ₁₂	<0.1	74	KIP
	6	LuAl ₃ (BO ₃) ₄ :Yb(5%)	Bi ₂ Mo ₃ O ₁₂	1.6	20	KIP
	7	YAl ₃ (BO ₃) ₄ :Yb(4.5%)	K ₂ Mo ₃ O ₁₀	_	61	MSU
	8	YAl ₃ (BO ₃) ₄ :Yb(8%)	K ₂ Mo ₃ O ₁₀	_	153	UV
	9	YAl ₃ (BO ₃) ₄ :Yb(2.5%)	K ₂ Mo ₃ O ₁₀	-	124	UV
	10	YAl ₃ (BO ₃) ₄ :Yb(0.3%)	K ₂ Mo ₃ O ₁₀	-	115	UV
	11	YAl ₃ (BO ₃) ₄ :Yb(2%)	K ₂ Mo ₃ O ₁₀	_	149	LCMCP
	12	YAl ₃ (BO ₃) ₄ :Yb(5%)	LaB ₃ O ₆	-	-	LCMCP

*J. Phys.: Cond. Matter 20, 45, (2008), *Popova M.N., Boldyrev K.N., Petit P.O., Viana B., Bezmaternykh L.N.* **High-resolution spectroscopy of YbAl**₃(BO₃)₄ **stoichiometric nonlinear laser crystals**

В зависимости от лаборатории роста и от используемого растворителя, концентрации висмута и молибдена достигают значения от десятых долей, до десятков процентов по отношению к основному редкоземельному элементу! <u>Это необходимо учитывать</u> при описании оптических и физических свойств данных соединений.

Новый безвисмутовый растворитель

Растворитель без висмута и молибдена: Li₂WO₄

Выводы

 Впервые показана важность проблемы определения неконтроллируемых примесей в редкоземельных боратах.

 Разработаны оптические методы (редкоземельный спектроскопический зонд, смещение температуры структурного фазового перехода, оптическая эмиссионная спектроскопия) по определению концентрации неконтроллируемых примесей.

Результаты показаны и обсуждены с ростовиками, которые приняли успешные попытки поиска новых растворителей, не дающих примесей.

○ Найдено множество узких и слабых линий около основной электронной линии Yb ²F_{7/2}(0)→²F_{5/2}(0'), в RAI₃(BO₃)₄, вызванных искажениями кристаллической решетки дефектами замещения. Часть спутников была отнесена к примесям Мо и Вi.

○ Проведено сравнение трех различных методик роста. Методика, основанная на флюсе Bi₂Mo₃O₁₂, даёт кристаллы с меньшей концентрацией примесей благодаря сильной химической связи Bi-Mo в флюсе.

о Выявлена причина расхождения температуры структурных фазовых переходов *R*32-*P*3₁21 в ферроборатах, связанная с попаданием в кристалл неконтроллируемых примесей компонентов флюса (в нашем случае, Bi³⁺).

○ Объяснен чрезвычайно сложный спектр оптических переходов в ионе Eu³⁺ кристалла EuFe₃(BO₃)₄, выращенного раствор-расплавной технологией с использованием висмутового флюса.

о Показано, что новый безвисмутовый флюс на основе Li₂WO₄ дает беспримесные кристаллы ферроборатов.

 О Исследование безвисмутового образца EuFe₃(BO₃)₄ позволило найти штарковские уровни редкоземельного иона Eu³⁺ и на их основе найти параметры кристаллического поля в этом соединении.

Спасибо за внимание