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Introduction / multifractality of wave functions at Anderson transitions (no interaction)

Irl<L

/ddr<|¢’E(r)|zq>d.lS ~ L

d(g—1),

[Wegner (1980,1987); Kravtsov, Lerner (1985); Pruisken(1985); Castellani, Peliti (1986)]

metal,
dig—1)+ A4,

()l

criticality,
o multifractal exponent A, < 0 is nonlinear function of ¢

insulator
e Legendre transform of 1, f(a) = ga — 1,

a =dt,/dg
o % measures a set of points where \z/ﬂz ~ L

« = metallic
= critical

[adapted from Evers, Mildenberger,

Mirlin]

[N

[adapted from Evers, Mirlin (2008)]-
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Introduction / strong mesoscopic fluctuations of LDOS at Anderson transition (no interactions, T = 0)

e local density of states (LDOS) in the cube of size L

p(E, r) = Z|¢a r)|*3(E — €q)
where ¢,(r) and ¢, w. f. and energy for a given disorder

e scaling of the moments of LDOS

(lEnE) ~1% g=012...

e strong mesoscopic fluct. of LDOS due to multifractality: A, <0

e spatial correlations of LDOS
(p(E, P)p(E, F + R))as ~ (RIL™, R<«L

examples for Anderson transitions in d = 2:
Ay = —0.34 (class All, spin-orbit coupling, numerics)
Ay = —0.52 (class A, integer qHe, numerics)
= —1/4 (class C, spin qHe, exact)
[see for a review, Evers&Mirlin (2008)]
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Introduction / experiments on noninteracting multifractality

e ultrasound speckle in the system of randomly packed Al beads
[Faez et al., 2009]

e localization of light in an array of dielectric nano-needles
[Mascheck et al., 2012]
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Introduction / scanning tunneling microscopy experiments

o differential conductance in 2DEG in InSbat B=12T
[Morgenstern et al. (2012)]

e differential conductance over an area of 500 Ax 500 A
in Gaj_yMn,As with x = 1.5%
[Richardella et al. (2010)]
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Introduction / Zero-bias anomaly of LDOS in the presence of Coulomb interaction

[Altshuler, Aronov, Lee (1980), Finkelstein (1983), Castellani, DiCastro, Lee, Ma (1984)]
[Nazarov (1989), Levitov, Shytov (1997), Kamenev, Andreev (1999)]
e Suppression of LDOS at the Fermi energy in d =2 (L = 00)

1 E
(p(E, 1))y ~ exp “lng In(|E]7) In DLKLT
where
g - conductance in units e?/h,
D - diffusion coefficient,
k = e’py/e - inverse static screening length
e Zero bias anomaly in d = 2 4 € at Anderson transition criticality

(p(E.r)y ~EF,  B=0()

in the absence of interaction average LDOS is non-critical (B = 0) for Wigner-Dyson classes
[see for a review, Finkelstein (1990), Kirkpatrick&Belitz (1994)] 6/21



Question to answer

How Coulomb interaction affects mesoscopic fluctuations of the
local density of states?
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The model / hamiltonian H = Hy + Hgis + Hint

® free electrons in d dimensions

Hy = / d"r g(n)e(V)i(r),

e(p) = p?/2m — class Al (spin-rotational and time-reversed symmetries are preserved)
e(p) = —ivp x o — class All (time-reversed symmetry are preserved)

€(p) = (p — eA)*/2m — class A (spin-rotational symmetry is preserved)

® scattering off white-noise random potential

Hgs = jddra(f)V(f)lP(r)v Vnv() = a(r)

27po T
® Coulomb interaction:
H flld"rd"r T e (r2)
int = 2 1 2 €|r1 7r2| PALAI o\l o' \I2)Ye’\I2

® disorder-averaged moments of the LDOS

([ete. r)]">dis = <[71; InGR(E. r, r)]">dis, GR(rti 1) = —ible — ) {00, 91} )

® assumptions (diffusive regime) y > 1; > T,|E|, where y — chemical potential, 7 —
mean-free time for scattering off potential impurities, T — temperature £ — energy

measured from the chemical potential.
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The model / field-theory approach, class Al

[Finkelstein(1983)]
e action for the nonlinear sigma-model

5[01:73—92 /drtr(V0)2+4nTZw/drtrr]Of ”TT > o> Z/drr,tr 19,01 1,0

r=03j=0,...3 an

~als S [ drtontita0rigno

r=12 an

where the matrix field Q (in Matsubara, particle-hole, spin and replica spaces) satisfies
Q*(r) =1, trQ(r) =0, 0'(r)=cTo(r)cC,

g — conductivity in units e’/h, Ty =T, — interaction amplitude in the singlet channel,
I1,I2,[3=T; - interaction amplitude in the triplet channel, [, — Cooper channel
interaction amplitude, 7, = 7, ® 5;, 7, s are Pauli matrices in particle-hole and spin
spaces, C = it;;, and matrices

/\glf = sgnndnmé"ﬁr Wg:f = "’Zwéaﬁv (IZ)glf = 15,,,,,,*(5"3(5”, (LZ)HB = n+m,k5a85ay

nm
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The model / field-theory approach

® disorder-averaged LDOS
(pEN) = BHK(ENs, Ki(E) = Re PR(E), Pi(ie,) = 5p 03

where ¢, = 7T(2n + 1) is fermionic Matsubara frequencies

® disorder-averaged 2d moment of LDOS
(PENPE ) = (BD(KAE, s
Ko(E, E') = Re [P{*’*(E, E') — PRA(E, E’)]

a1 a1

Palien, ien) = sp Qn " (r) sp Ot > (r) — 25p On (1) Qi " (r)

® K, are eigenoperators of renormalization group transformations. Renormalization of K,

by means of perturbation theory around Q = A.
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Results / mesoscopic fluctuations of LDOS in the presence of interaction (T = 0)

e scaling of the moments of LDOS (Lg ~ |E|™"2, &~ |t — |7, 0 = B2)
([o(E, N)I7) ~ (p(E))1L™" ~ L7070, L= min{Lg, L, &},

where multifractal exponents A, are determined by anomalous dimensions

atton) = N0 at 4 () + 3t — 20) 2] + 010,
() =2+ 2y + 12+yy n2(1 + y).

Note that y =T/Z,. For the Coloumb interaction, y; = —1. The function ¢(y)

monotonously decease between ¢(—1) = 2 — 72/6 and ¢(0) = 0.

average LDOS exponent 6 = {* where

{ty) = f[ln(1 +ys) 431+ ) + 2yf]% +0(f)

[Finkelstein (1983), Castellani, DiCastro, Lee, Ma (1984)]
cf. anomalous dimensions for non-interacting electrons

1) = g1 — )t + O(t*).

[Hof&Wegner (1986), Wegner-(1987)]
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Results / metal-insulator transition in d =2+ ¢ (class A, Coulomb interaction)

[Hikami(1983), Castellani, DiCastro, Lee, Ma(1984), Finkelstein(1984), Bernreuther, Wegner(1986)]
[Baranov, Pruisken, Skori¢ (1999), Baranov, Burmistrov, Pruisken (2002)]

e no interaction e Coulomb interaction
B(t) = et — (t/2)° — %(1/2)5 +0(1%) B(t) = et — t* — A + O(t")
1" =2v2¢ (1 - ?) + 0(e?) t. = e(1 — Ae) + O(€°)
vy = 1/(2¢) — 3/4 + O(e) v="1/e—A+ O(e)
Zm=d=2+¢ 7=2+¢/2+ Be® + O(¢)
B, =0 B =12+ 0(e)
112 1—
M — a1 _q(1 —q)e
AY = g0 q)(z) By =T
_ 2 72

multifractality is supressed by Coulomb interaction in LDOS, 6q+ A, > 0, but only weakens in

normalized LDOS, || < |A,|™ (for not too large values of q)

139 (218

A= 192

19 2 2 n2 1 1 2
+ 50+ (1+ 5 - (- T +7((3))*+9—7ln 277114(5)“.64, B:Z(ZA—?—ii ~—034
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Spatial correlations of LDOS / the metallic and critical phases t < t., T =0, L = oo

(plE.Np(E.r+ R [(RILY™, R < £ =minf|E[2, (1, — 1)}

~

({p*(E, 1)) 0, L<LR

o)

critical phase metallic phase

t=1t, t<t

Distance (&)

0 +100 (] +100
Energy (mV) Energy (mV)

[Richardella et al. (2010)]

Note: characteristic energy scale £, ~ |t, — t|**
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The insulating phase t>t, /class A, Coulomb interaction

e interaction favors localization, t, < t,ﬁ") (e d=2+¢)

e phase diagram near interacting critical point t = t, (y = p):

€§é},

Interacting|Critical

Insulating

Interacting|Critical

ke
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The insulating phase t>t, /class A, Coulomb interaction

o two-step RG (Lg ~ |E|7"* « &~ (1 —1)7"):
inter. RG inter. RG
metallic ¢, &, t(Ly)  insulating ¢ metallic 1, . t(Ly) insulating ¢
Iy H 1 i
WLy it t t. t(Ly) t
e insulating metallic insulating
non-inter. RG

metallic e
non-inter. RG

t(Le) < 1
e mobility edge E, for single particle excitations

t(lg) =t =

e divergent localization and dephasing lengths
o

(IEVE —1)7",

&(E) ~ EIEVE =17, L¢(E)~LE{
o,

N.B.: the conditions zv > 1 and z"‘tv.‘ > 1 hold

tLg) > 1"

Ec ~ (t - t*)vz ~ (ll* - u)vz

E|l-E<E  o__d
|E| < E. "d+aD
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Moments of LDOS / the insulating phase t > t,

e interacting criticality |E| » E, (Lg ~ |E|7'? < &~ (t—t,)7"):

(Pq(E» ~ L;Aq

Sunensuy

(n)
Ly(E)\ ™52
(pUE)) - (T) o L) <L 5 s
(plED? )
(é) . Ly(E) > L S :
e noninteracting criticality below the mobility edge £, — |E| < E, g g
E ‘Alzn) -'“'-
UEY gy (L)) T aB <t il
(p(E))? (E) - S
(4) {E) > L Ah
AR
e deep below the mobility edge |E| < E, (Lg > &) ,r" % ‘\‘
S \
T

(PUE) ey ( L ) o

(p(E))? g
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Phase diagram / comparison with numerics on Hartree-Fock w.f.

[Amini, Kravtsov, Miiller (2013)]
e LDOS correlation function made from Hartree-Fock w.f.

(prr (E, r)pur(E, r + R))
(Ph(E.r))?

Locafized

“u Delocalized Delocalized s
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Remark | / two-particle mobility edge?

for a short-ranged interaction the two-particle mobility edge

Ecy ~ (e — )"

[Imry (1995); Jacquod, Shepelyansky (1997); Shepelyansky (2000)]

for Coulomb interaction we expect that

EC2NECN()UC_AU

)ZV
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Remark 1l / neutral (particle-hole) excitations?

neutral e-h excitations are delocalized due to dipole-dipole (1/R3)
interaction in d > d,
[de =3: Fleishman, Anderson (1980); Levitov (1990)]
[de =3/2: Burin (2006); Yao et al. (2013)]

we expect that

(i) for d > d. single-particle excitations will be localized despite emitting
of neutral e-h excitations

(ii) dephasing length near and below E. will be modified by neutral e-h
excitations

(iii) LDOS correlations will be smeared by neutral e-h excitations below
E:l—Lg
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Conclusions

e multifractality in LDOS does exist in interacting disordered systems

e anomalous dimensions controlling multifractal exponents are computed
within the two-loop approximation for different symmetry classes

e multifractal exponents are different from the non-interacting case

e on the insulating side of the Anderson transition there is the mobility edge
for single-particle excitations

e scaling of LDOS near the mobility edge is controlled by non-interacting
critical exponents

e our results provide qualitative understanding of experiments by Richardella
et al. and numerics by Amini et al.
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Exercises

1. Using the relation
(Iple. )~ 172,
dis
to demonstrate that

(p(E. Mp(E, r + R))as ~ (RIY, R L.

2. Using the relation
(B,

to demonstrate that (L, ~ |w|~"/%)

(plE, Np(E + &, R))as ~ L7, Ly <L

3.* There is the unitary matrix Qg; in replica @, =1,...,nand R/A p,q = %1 spaces. To
compute the average of the following operator Q)% Qf, (a # B) over rotations
UK = (172)(1 + ki)oM UE,.
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