

Скирмионная решётка в MnSi вблизи T_c:

исследование методом малоугловой дифракции нейтронов

НლМლ ЧУБОВАо ВლАლ ДЯДЬКИНо ЕლВლ МОСКВИНо СლВლ МАЛЕЕВо СლВლ ГРИГОРЬЕВ.

14 Сентября 2015, Идеи и методы физики конденсированного состояния, Сочи

постановка задачи

Задача: рассмотреть H-T фазовую диаграмму, появление A-фазы (переключение вектора k и скирмионная решётка)

КРИСТАЛЛОГРАФИЧЕСКАЯ СТРУКТУРА

MnSi, FeSi, CoSi, $Mn_{1-y}Fe_ySi$, $Fe_{1-x}Co_xSi$, $Mn_{1-y}Co_ySi$,

FeGe, MnGe, Fe_{1-x}Mn_xGe

- Структура типа В20
- Пространственная группа Р2₁3
- a = 4.55 Å
- 4 Ме-атома и 4 Si атома с координатами (u,u,u), (1/2+u,1/2-u,u), (1/2-u,-u,1/2+u) (-u,1/2+u,1/2+u), где и_{Ме} = 0.138 и и_{Si} = 0.845.

14 Сентября 2015, Идеи и методы физики конденсированного состояния, Сочи

Скирмион- это узел, завязанный из векторного поля.

Теоретически можно представить себе различные виды скирмионов...

Простой случай:

a) текстура распространяется вдоль оси х b) Скирмионы с |m|=const c) Скирмионы с |m(ρ→∞)|→0

А. Богданов «Азбука скирмионов»

1. Что такое киральный скирмион?

Рис. 1 Уединенные киральные скирмионы.

ках. Итак, киральный скирмион есть особый тип двумерных магнитных топологических солитонов и представляет собой локализованную, аксисимметричную структуру с фиксированным направлением вращения вектора намагни-ченности (Рис.1). Внутренняя структура скирмионов

MnSi thin films obtained from single crystal + Lorentz TEM

A. Tonomura et al., Nano Lett., 12, 1673 (2012).

Скирмионная решетка, наблюдаемая в А-фазе.

Нет прямых доказательств для одиноких скирмионов.

Нейтронное рассеяние в MnSi

B. Lebech, et al (1996)S.V. Grigoriev et al. Phys. Rev. B73 (2006) 224440

Нейтронное рассеяние в MnSi

S.V. Grigoriev, S.V. Maleyev, A.I. Okorokov, Yu.O. Chetverikov, H. Eckerlebe, Phys.Rev.B **73** (2006) 224440.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georaii. P. Böni. Science 323 (2009) 915.

Экспериментальная установка D22 (ILL)

Гексагональная решётка

Схема эксперимента рассеяния с полем **H**, направленным параллельно пучку нейтронов

Карта рассеяния в магнитном поле при ориентации кристалла $\mathbf{H} \parallel \mathbf{k} \parallel [111]$ при T = 27.5 К и $B_{int} = 0.17$ Т.

k_h=0.38 нм⁻¹

14 Сентября 2015, Идеи и методы физики конденсированного состояния, Сочи

10(16)

Аппроксимация

Field-crystal geometry H || [111]

Field scan at T = 27.5 K

H = 0.29 T

H = 0.40 T $H_{r_{2}} = 0.35 T$

Field-crystal geometry H || [111]

H_{F1} =0.11 T H_{A1}=0.12 T

экспериментальные данные

12(16)

Полевая зависимость

Н-Т фазовая диаграмма

14 Сентября 2015, Идеи и методы физики конденсированного состояния, Сочи

14(16)

а

B || [111]

29

B || [110]

29

B|[[100]

29

С

A-phase

28

A-phase

28

b

A-phase

28

27

27

27

T(K)

Гексагональную структуру относящуюся только к А-фазе можно "проследить" до низких температур (i) k_A = k_C = k_S (ii) когерентность А-фазы ΔQ_A ограниченной разрешением установки 14 Сентября 2015, Идеи и методы физики конденсированного состояния, Сочи

Заключение

Методом малоуглового рассеяния нейтронов детально изучена магнитная структура кубического спирального магнетика MnSi в небольшой области (*H-T*)-фазовой диаграммы (A-фазе). Магнитная структура A-фазы характеризуется в пространстве импульсов двумерной гексагональной картиной из 6 брэгговских пиков с **k**, перпендикулярными приложенному магнитному полю **H**. В современной литературе эта структура получила название скирмионной решетки.

В нашей работе мы приводим аргументы в пользу того, что наблюдаемая структура является двумерной гексагональной спиновой сверхрешеткой, образующейся из-за конкуренции двух взаимодействий (ферромагнитного обмена и взаимодействия Дзялошинского-Мория), подобно одномерным модуляциям спиновой структуры (плоская спираль, коническая спираль).

Pis'ma v ZhETF, vol. 100, iss. 3, pp. 238-243

© 2014 August 10

Hexagonal spin structure of A-phase in MnSi: densely packed skyrmion quasiparticles or two-dimensionally modulated spin superlattice?

S. V. Grigoriev^{+*1}), N. M. Potapova⁺, E. V. Moskvin^{+*}, V. A. Dyadkin^{+×}, Ch. Dewhurst^o, S. V. Maleyev⁺

⁺Konstantinov Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia

*S.-Petersburg State University, 198504 S.-Petersburg, Russia

[×]Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility, 38000 Grenoble, France

^oInstitute Laue-Langevin, F-38042 Grenoble Cedex 9, France

Submitted 16 June 2014 Resubmitted 7 July 2014

Спасибо за внимание!