ФАЗОВОЕ РАССЛОЕНИЕ В ЭЛЕКТРОННО-ДОПИРОВАННОМ МАНГАНИТЕ Sr_{0.98}La_{0.02}MnO₃ ПО ДАННЫМ ЯМР ⁵⁵Mn

<u>Гермов А.Ю.</u>¹, Волкова З.Н.¹, Верховский С.В.¹, Михалёв К.Н.¹, Геращенко А.П.¹,Королёв А.В.¹, Голдырева Е.И.², Леонидов И.А.², Кожевников В.Л.²

Институт физики металлов УрО РАН, г. Екатеринбург ¹ Институт химии твердого тела УрО РАН, г. Екатеринбург ²

Идеи и методы физики конденсированного состояния Сочи, 11-20 сентября 2015г

Двойной обмен

double-exchange

Мотивация

Переход из диэлектрика в состояние с металлической проводимостью в кубическом монокристалле SrMnO₃ при минимальном допировании за счет гетеровалентного замещения Sr→Ce (La).

Мотивация

- Предложенная модель однородного металлического антиферромагнетика с подкошенными магнитными моментами, основана на макроскопических методиках измерения.
- В основном допированные манганиты являются фазово-расслоенными неоднородными магнитными системами.

Фазовая диаграмма, взятая из работы H. Sakai, S. Ishiwata, D. Okuyama, A. Nakao, H. Nakao, Y. Murakami, Y. Taguchi, and Y. Tokura, Phys. Rev.B, 2010. B 82, 180409.

Цель и задачи

- Цель:
- Исследовать с помощью локальной методики ЯМР кубический Sr_{0.98}La_{0.02}MnO₃ и выявить природу магнитного состояния
- Задачи:
- Измерения температурных зависимостей магнитной восприимчивости в слабом и сильном магнитных полях
- Измерения полевых зависимостей магнитной восприимчивости
- Регистрация спектров ЯМР 55Mn
- Анализ температурных и полевых зависимостей магнитной восприимчивости
- Анализ экспериментальных данных ЯМР 55Mn

Магнитная восприимчивость

Рис 1. Температурная зависимость магнитной восприимчивости поликристаллического манганита Sr_{0.98}La_{0.02}MnO₃, полученная в магнитном поле (a) 9 T, (b) 0.01 T. Вставка – производная магнитной восприимчивости $d\chi_{\rm m}/dT$ в зависимости от температуры в поле 9 Т. $d\chi_{\rm m}/dT$: T_N = 230 ±10 K

Закон Кюри-Вейса : $\theta_N = -108 \pm 4 \text{ K}$ 50 $\theta_c = 295 \pm 30 \text{ K}$ 7

Спектры ЯМР на 55Mn

Рис 3. Спектры ЯМР ⁵⁵Мп в Sr_{1-x}La_xMnO₃: x = 0.02, 0.04, зарегистрированные в локальном поле при T = 4.2 K.

Ширина линии

Рис 4. Температурная зависимость ширины линии на половине высоты для AFM (●) и FM (○) линий в спектрах ЯМР 1 ⁵⁵Mn в Sr_{0.98}La_{0.02}MnO₃.

Выводы

- Показано, что в электронно-допированном Sr_{0.98}La_{0.02}MnO₃ реализуется фазовое расслоение в области дальнего магнитного порядка на антиферромагнитную матрицу и ферромагнитные области;
- Температура Кюри у обнаруженных ферромагнитных областей превышает температуру Нееля антиферромагнитной матрицы;
- Суммарная намагниченность ферромагнитных областей возрастает при понижении температуры;
- Подтвержден динамический характер наблюдаемых ферромагнитных областей
- Выдвинуто предположение о том, что форма этих областей может отличаться от сферической.

Список литературы

- 1.J. van den Brink, D. Khomskii, Phys. Rev. Letters 82, 1016 (1999); A.M. Oleś, G. Khaliullin, Phys. Rev. 84, 214414 (2011)
- 2. H. Sakai, S. Ishiwata, D. Okuyama, A. Nakao, H. Nakao, Y. Murakami, Y. Taguchi, and Y. Tokura, Phys. Rev.B, 2010. B 82, 180409
- 3. Nagaev E. Colossal(magnetoresistance materials: manganites and conventional ferromagnetic semiconductors // Phys. Rep. 2001. V. 346. P. 387–531.
- 4. Михалев К.Н., Волкова З.Н., Геращенко А.П. ЯМР в манганитах. ФММ. 2014. Т.115, № 11, с. 1204–1225.
- 5. S. Liu, X. Tan, K. Li, R. Hughes, Ceram. Int. 28 (2002) 327

Спасибо за внимание