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Origin of magnetic quantum oscillations in me

For parabolic electron dispersion 

without magnetic field, 
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in magnetic field directed along z-

axis the dispersion relation is
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where c eB/m*c

As the magnetic field increases 
the Landau levels periodically 
cross Fermi level. 

This results in magnetic quantum 
oscillations (MQO) of thermodynamic 
(DoS, magnetization) and transport 
electronic properties of metals.

Introduction.

In 3D the DoS oscillat
weak, because the int
over pz smears them o

In 2D the DoS oscillat
strong and sharp, lead
sharp and non-sinuso



MQO of thermodynamic quantiIntroduction.

The thermodynamic potential is given by the integral of DoS

The transport quantities cannot be calculated so simply, but t
oscillating term in 3D metals comes from the scattering rate 1
proportional to the DoS (in Born approximation). Then 

Magnetization is given 
by the derivative
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where the density of electron states (DoS)
is given by the sum over quantum states 
(Landau levels and pz):



Lifshitz-Kosevich formula for MQ
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where the dHvA fundamental frequency

The temperature damping factor 
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The scattering (Dingle) damping factor exexp)(
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allows to measure the electron mean free time Bkh 22/
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and the spin 
damping 
factor

Quantum oscillations of magnetization (de Haas – van Alphe

Introduction.

only difference between 3D and 2D ? [D. Shoenberg]

allows to measure the g
(if m* is known from T-d

where allows to measure m*.

allows to measure the Fermi-surface shape. 



3D compounds in tilted magnetic field

3D case k is conserved.
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Landau
levels

Extremal cross 
section area

Extremal cross-section area of Fermi surface (FS), given by 
MQO frequency and measured at various tilt angles of magneti
allows to obtain the total FS geometry of metals.

Fermi surface of g

MQO is a traditional tool to study FS geometry
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Electrons move 
in planes B

F
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2D electron gasB

2D electron gas
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Harmonic expansion 
of Fermi momentum

Harmonic expansion of the angular dependence of FS cross-s
(measured as the frequency of magnetic quantum oscillations):

[First order: C. Bergemann et al., PRL 84, 2662 (2000); Adv. Phys. 52, 63
Second order relation between k and A : P.D. Grigoriev, PRB 81, 2051

One can derive the relation between the first coefficients k
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Calculation (from Kubo formula) of quasi-2D SdH
(magnetotransport oscillations) in next order in c

Kubo 
formula 

Energy spectrum

Scattering on point-like impurities in self-
consistent Born approximation gives = +
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[ P.D. Grigoriev, Phys. Rev. B 67, 144401 (2003) ]



(2)

,

n

4 tz >> c



4 tz> c



Phase shift of beats of MQO in quasi-2D m

Phase shift of beats in 
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Magnetic-field depend
the phase shift of MQ

Dashed line - result of Boltzmann
equation; [P. D. Grigoriev et al., P
Solid line is obtained from the Ku
P. D. Grigoriev, Phys. Rev. B 67, 1



Slow oscillations (comparison with experim

General view of quantum & slow 
oscillations of magnetoresistance

Angle dependence of the freq
slow oscillations is similar to 

[ M. V. Kartsovnik, P. D. Grigoriev et al., Phys. Rev. Lett. 89, 126802, 
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Crystal structure of rare-earth tritelluridesIntroduction

F. Schmitt et al., New Journal of Physics 13, 063022 (201

(R =Y, La, Ce, Nd, Sm, Gd, Tb, Ho, Dy, Er, Tm)



ARPES data on momentum depen
of CDW energy gap in TbTe3

F. Schmitt et al., New Journal of Physics 13, 063022 (2011)

Introduction

ARPES usually gives the Fermi surface only at large energy 
at rather high temperature. The phase transitions at low Tc a



TbTe3

GdTe3
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Dingle factors of slow and quantum oscillat
3). The Dingle tem
of slow and fast qu
oscillations are dif
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quantum oscillations
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