СВЕРХБЫСТРАЯ ЛАЗЕРНО-ИНДУЦИРОВАННАЯ ДИНАМИКА НАМАГНИЧЕННОСТИ В ДИЭЛЕКТРИКАХ

Александра Калашникова

Лаборатория физики ферроиков ФТИ им. А. Ф. Иоффе РАН

ФТИ им. А. Ф. Иоффе РАН		Radboud University Nijmegen
В. Н. Гриднев		D. Bossini
П. А. Усачев		J. A. de Jong
Р. В. Писарев		I. Razdolski
		A.V. Kimel
	МЭИ	A. Kirilyuk
	А. М. Балбашов	Th. Rasing

XIV Школа-конференция «Проблемы физики твердого тела и высоких давлений» Сочи, Россия 11 сентября 2015

План лекции

Проблема скорости управления намагниченностью

Взаимодействие магнитоупорядоченных сред

- с лазерным излучением:
- Магнитооптика
- Оптомагнетизм

Лазерно-индуцированная динамика намагниченности

- в диэлектриках
- Возбуждение и управление спиновыми волнами
- Переориентация намагниченности и управление ею

Взаимодействие с решеткой

Обменное взаимодействие между спинами $\mathbf{M} = \frac{1}{V} \sum \mathbf{m}_i$

$$U_H = -\mathbf{M}\mathbf{H}$$

$$U_A = K \cos^2 \alpha + \dots$$

Магнитокристаллическая анизотропия

$$U_E = -J_{ij}\mathbf{m}_i\mathbf{m}_j$$

Магнитный порядок: •Ферромагнитный (J>0) •Антиферромагнитный (J<0) •Ферримагнитный.....

Как быстро можно переключить намагниченность?

Phys. Z. Sowietunion 1935)]

few T; 2.3 ps

"No matter how short and strong the magnetic-field pulse, magnetic recording cannot be made ever faster"

[I. Tudosa et al., Nature (2004); C. H. Back et al., Science (1999)]

Характерное время - наносекунды

[Th. Gerrits et al., Nature (2002)]

Взаимодействие света с магнитоупорядоченной средой

$$\Phi_{\text{int}} = \varepsilon_{ij} E_i E_j^* + \alpha_{ijk} E_i E_j^* M_k + \beta_{ijkl} E_i E_j^* M_k M_l + \dots$$

Эффект Фарадея [*M. Faraday, 1845*]

6

 $\Delta n_{\sigma^+ - \sigma^-} \sim \alpha_{xyz} M_z$

Взаимодействие света с магнитоупорядоченной средой

Взаимодействие света с магнитоупорядоченной средой

$$\Phi_{\text{int}} = \varepsilon_{ij} E_i E_j^* + \alpha_{ijk} E_i E_j^* M_k + \beta_{ijkl} E_i E_j^* M_k M_l + \dots$$

 $\Delta n_{\sigma^+ - \sigma^-} \sim \alpha_{xyz} M_z$

Обратный эффект Фарадея

[Pitaevskii, Sov. Phys. JETP **12**, 1008 (1961) van der Ziel PRL. **15**, 190 (1965)]

 $\mathbf{M}_{z} \sim \alpha_{xyz} \mathbf{E} \times \mathbf{E}^{*}$

Отклик **магнитоупорядоченной** среды на **фемтосекундный лазерный** импульс?

Как детектировать лазерно-индуцированную динамику намагниченности?

Магнитооптическая спектроскопия с фемтосекундным временным разрешением @ FerroLab

Динамика намагниченности, индуцированная <u>циркулярно-поляризованными</u> импульсами

Слабый ферромагнетик DyFeO₃

[A. V. Kimel et al., Nature **435**, 655 (2005)]

Импульс лазерноиндуцированного эффективного магнитного поля

$$H_z \sim i\alpha_{xyz}(E_x E_y^* - E_y E_x^*)$$

Сверхбыстрый обратный эффект Фарадея

Возбуждение прецессии намагниченности и управление начальной фазой

Только циркулярная поляризация? Роль поглощения?

Магнитооптика и оптомагнетизм

$$\Phi_{\text{int}} = \varepsilon_{ij} E_i E_j^* + \alpha_{ijk} E_i E_j^* M_k + \beta_{ijkl} E_i E_j^* M_k M_l + \dots$$

Эффект Фарадея

Эффект Фохта (Котона-Мутона)

Обратный эффект Фарадея

Обратный эффект Котона-Мутона

Динамика намагниченности, индуцированная <u>линейно-поляризованными</u> импульсами

Слабый ферромагнетик FeBO₃

Импульс лазерноиндуцированного эффективного магнитного поля

 $H_x \sim \beta_{xvxv} E_x E_v^* L_v$

Сверхбыстрый обратный эффект Котона-Мутона

[A. M. Kalashnikova et al., Управление начальной фазой прецессии PRL **99**, 167205(2007), PRB **78**, 104301 (20**08)** нейно-поляризованным импульсом

Импульсное стимулированное рассеяние (ISRS) на магнонах

[A. M. Kalashnikova et al., PRL (2007), PRB (2008); V. N. Gridnev, PRB (2008)]

Роль поглощения?

быть избирательным?

Сверхбыстрое оптомагнитное возбуждение в прозрачном материале

Возбуждение когерентной спиновой прецессии линейными (обратный эффект Котона-Мутона) и циркулярными (обратный эффект Фарадея) фемтосекундными лазерными импульсами

Управление начальной фазой прецессии за счет изменения поляризации лазерного импульса

Микроскопический механизм: импульсное стимулированное рамановское рассеяние на магнонах

Не требует оптического поглощения: избирательное возбуждение спиновой системы

Спин-ориентационный фазовый переход в REFeO₃

M_{Fe4}

F_c

●G_a

b

Спин-ориентационный фазовый переход (SR)

$$F(T) = K_0 + K_2(T)f_c^2 + K_4(T)f_c^4$$

Лазерно-индуцированная переориентация намагниченности

Как снять вырождение?

Управляемый лазерно-индуцированный фазовый переход?

Одноимпульсная магнитооптическая микроскопия с фемтосекундным разрешением

Одноимпульсная магнитооптическая микроскопия с фемтосекундным разрешением

Ориентационный фазовый переход в (Sm,Pr)FeO₃, индуцированный одиночным импульсом

[J. A. de Jong et al., PRL (2012)]

T=90 К Сверхбыстрый ориентационный фазовый переход управляемый поляризацией одиночного импульса!

Механизм лазерно-индуцированного ориентационного перехода в REFeO₃

Как сохраняется информация о поляризации лазерного импульса?

Управление лазерно-индуцированным ориентационным переходом

Сверхбыстрый обратный эффект Фарадея

Импульсное возбуждение прицессии намагниченности с <u>малой амплитудой (</u><10°)

Начальная фаза прецессии определяется поляризацией импульса

Вырождение между двумя состояниями снимается динамически

Управление лазерно-индуцированным ориентационным переходом

Лазерно-индуцированный сверхбыстрый ориентационный фазовый переход

Управление сверхбыстрым лазерно-индуцированным переходом в диэлектрике REFeO₃

Возможно благодаря

•Импульсному возбуждению прецесии

намагниченности

•Пикосекундному нагреву решетки

Фазовая диаграмма такого перехода определяется

- •Поляризацией лазерного импульса
- •Интенсивностью лазерного импульса
- •Начальной температурой образца

Сверхбыстрая лазерно-индуцированная динамика намагниченности в диэлектриках

Сверхбыстрые оптомагнитные явления: •возбуждение и управление намагниченностью •избирательное возбуждение спиновой системы •основаны на процессах типа рамановского рассеяния

Поглощение энергии фемтосекундного импульса:

- •намагниченности за счет нагрева
- •изменение магнитной анизотропии
- •лазерно-индуцированные фазовые переходы

Управление сверхбыстрыми фазовыми переходами

[A. Kirilyuk et al., Rev. Mod. Phys**. 82**, 2731 (2010); А. М. Калашникова и др., УФН **185** (октябрь 2015)]

Changing the magnetization value at the femtoscale

[E. Beaurepaire et al., PRL (1996)... Review:

A. Kirilyuk et al., RMP (2010)]

Ultrafast demagnetization in a Ni film

Dominant role in metals is played by the absorption of light and rapid heating of electrons

Proposed mechanisms:
Phonon-mediated spin-flip scattering [B. Koopmans et al., Nature Mater. (2009); K. Carva et al., PRB (2012)]
Superrdiffusion [M. Battiato et al., PRL (2009); M. Savoini et al., PRB (2014); N. Moisan et al., Sci. Rep. (2013)]

Excitation of spin waves [B. Koopmans et al., PRL (2002).....]
Magnetization reversal

All-optical magnetization reversal: first demonstration

Ferrimagnetic metallic alloy GdFeCo

[D. Stanciu et al., PRL (2007)] 29

All-optical magnetization reversal by a single pulse

Initial state State after N pulses

What is the time scale?

[T. Ostler et al., Nature Comm. (2012)]

Dynamics of all-optical magnetization reversal

[K. Vahaplar et al., PRL (2009); PRB (2012)]

Ultrafast dynamics in ferrimagnetic GdFeCo alloy during first picoseconds

Optical pump X-ray probe

100 430 fs Normalized XMCD (%) 50 Ο Н -50 140 fs Fe Transient -100ferromagnetic state 3 Pump-probe delay (ps)

Distinct ultrafast sublattice dynamics in a metallic ferrimagnet

[I. Radu et al., Nature (2011)]

Mechanism of the all-optical magnetization reversal in ferrimagnetic alloy

All-optical magnetization reversal in various ferrimagnetic structures

RE/TM alloy

RE/TM multilayers

• RE/TM multilayers

[S. Mangin et al., Nature Mater. (2014)]

Ultrafast magnetization reversal: at microscale and beyond

$2-\mu m$ structures

[T. Ostler et al., Nature Comm. (2012)]

Сверхбыстрый оптомагнетизм – 3

Оптическое переключение намагниченности of magnetization В ферримагнитных металлах RE-TM и родственных структурах

Происходит через сильно-неравновесное размагниченное состояние

Основано на сверхбыстром нагреве и разной динамике подрешеток

Позволяет достичь времен записи-считывания ~30 ps

Может быть реализовано в синтетических ферримагнетиках

Может быть реализовано в микронных и нанометровых структурах

