Какие бывают эффекты Холла

А.В.Михеенков

ИФВД РАН, МФТИ

Какие бывают эффекты Холла

А.В.Михеенков

ИФВД РАН, МФТИ

А.Ф.Барабанов, Ю.М.Каган, Л.А.Максимов, А.В.Михеенков, Т.В.Хабарова, Эффект Холла и его аналоги, УФН 185 (5), 479, 2015.

1 Введение		3 Риги-Ледюк	4 B ΦM	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 🕻
0000	0000000	000	000				00

Содержание

1 Введение

- 2 Эффект Холла в металлах
- Эффект Риги-Ледюка
- 🜗 Аномальный эффект Холла в ферромагнетиках
- 🍯 Эффект Бинакера-Зенфтлебена
- 🜀 Фононный эффект Холла
- 7 Спиновый эффект Холла
- ⑧ Магнонный эффект Холла

On a New Action of the Magnet on Electric Currents.

BY E. H. HALL, Fellow of the Johns Hopkins University.

SOMETIME during the last University year, while I was reading Maxwell's Electricity and Magnetism in connection with Professor Rowland's lectures, my attention was particularly attracted by the following passage in Vol. II, p. 144:

"It must be carefully remembered, that the mechanical force which urges a conductor carrying a current across the lines of magnetic force, acts, not on the electric current, but on the conductor which carries it. If the conductor be a rotating disk or a fluid it will move in obedience to this force, and this motion may or may not be accompanied with a change of position of the electric current which it carries. But if the current itself be free to choose any path through a fixed solid conductor or a network of wires, then, when a constant magnetic force is made to act on the system, the path of the current through the conductors is not permanently altered, but after certain transient phenomena, called induction currents, have subsided, the distribution of the current will be found to be the same as if no magnetic force were in action. The only force which acts on electric currents is electrometive?2015

1 Введение		3 Риги-Ледюк	4 В ФМ	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000			00
О чем						

Не про все гальваномагнитные и термомагнитные явления,

а только про эффект Холла

и его прямые аналоги

well's Electricity and Magnetism in connection with Professor Rowland's lectures, my attention was particularly attracted by the following passage in Vol. II, p. 144:

"It must be carefully remembered, that the mechanical force which urges a conductor carrying a current across the lines of magnetic force, acts, not on the electric current, but on the conductor which carries it. If the conductor be a rotating disk or a fluid it will move in obedience to this force, and this motion may or may not be accompanied with a change of position of the electric current which it carries. But if the current itself be free to choose any path through a fixed solid conductor or a network of wires, then, when a constant magnetic force is made to act on the system, the path of the current through the conductors is not permanently altered, but after certain transient phenomena, called induction currents, have subsided, the distribution of the current will be found to be the same as if no magnetic force were in action. The only force which acts on electric currents is electrometive?2015

1 Введение		3 Риги-Ледюк	$4 \text{ B} \Phi \text{M}$	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 🕻
0000	0000000	000	000				
О чем							

Не про все гальваномагнитные и термомагнитные явления,

- а только про эффект Холла
- и его прямые аналоги

жеща Flootnicity and Magnetican in connection with Professor Powler V Эффект Холла изучен в пределах слабых и сильных полей

здесь будет только предел слабых полей

not on the electric current, but on the conductor which carries it. If the conductor be a rotating disk or a fluid it will move in obedience to this force, and this motion may or may not be accompanied with a change of position of the electric current which it carries. But if the current itself be free to choose any path through a fixed solid conductor or a network of wires, then, when a constant magnetic force is made to act on the system, the path of the current through the conductors is not permanently altered, but after certain transient phenomena, called induction currents, have subsided, the distribution of the current will be found to be the same as if no magnetic force were in action. The only force which acts on electric currents is electrometive?2015

1 Введение	2 В металлах	3 Риги-Ледюк	4 Β ΦM		6 Фононный	7 Спиновый	8 Магнонный
Очем	000000	000	000	0	0	0	00

Не про все гальваномагнитные и термомагнитные явления,

а только про эффект Холла

и его прямые аналоги

Эффект Холла изучен в пределах слабых и сильных полей

здесь будет только предел слабых полей

not on the electric current, but on the conductor which carries it. If the

Почти ничего не будет

про квантовый эффект Холла

choose any path through a fixed solid conductor or a network of wires, then, when a constant magnetic force is made to act on the system, the path of the current through the conductors is not permanently altered, but after certain transient phenomena, called induction currents, have subsided, the distribution of the current will be found to be the same as if no magnetic force were in action. The only force which acts on electric currents is electrometive 2015

1 Введение		3 Риги-Ледюк	4 В ФМ	6 Фононный	7 Спиновый	8 Магнонный 3
•000 -	0000000	000	000			00
О чем						

Не про все гальваномагнитные и термомагнитные явления,

а только про эффект Холла

и его прямые аналоги

Эффект Холла изучен в пределах слабых и сильных полей

здесь будет только предел слабых полей

not on the electric current, but on the conductor which carries it. If the

Почти ничего не будет

про квантовый эффект Холла

cnoose any path through a nxea solid conductor or a network of wires, then,

Глубина изложения

структура, а не детали

tion of the current will be found to be the same as if no magnetic force were in action. The only force which acts on electric currents is electrometive 2015 3/26

1 Введение		3 Риги-Ледюк	4 B ΦM	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 🕻
0000	0000000	000	000				
Геометрия							

Как выглядит эффект Холла

1 Введение		3 Риги-Ледюк	$4 \text{ B} \Phi \text{M}$	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 🗧
0000	0000000	000	000				
Библиограф	ия						

Работы Эдвина Герберта Холла (1855–1938) по эффекту Холла

- Hall E. H., Am. J. Math. 2, 287 (1879)
- Hall E. H., Am. Journ. Sci. 19 (3), 200 (1880)
- Hall E. H., Fort. Phys. Abt. 1, 920 (1880)
- Hall E. H., Phil. Mag. 9 (5), 225 (1880)
- Hall E. H., Am. Journ. Sci. 20 (3), 161 (1880)
- Hall E. H., Phil. Mag. 12 (5), 157 (1881)
- Hall E. H., Nature 25, 46 (1881)
- Hall E. H., Am. Journ. Sci. 25 (3), 215 (1883)
- Hall E. H., Phil. Mag. 19 (5), 419 (1885)
- Hall E. H., Science ns-5, 249 (1885)
- Hall E. H., Am Journ. Sci. 36 (3), 237 (1889)
- Hall E. H., Proc. Am. Acad. 50, 67 (1914)
- Hall E. H., Proc. Natl. Acad. Sci. 3, 163 (1917)
- Hall E. H., Proc. Natl, Acad. Sci. 9, 41 (1923)

1 Введение		3 Риги-Ледюк	4 В ФМ	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 3
0000	0000000	000	000				
Классифика	ация						
Эффект	ты трех пе	рпендикул	яров				

1 Введение		3 Риги-Ледюк	$4 \text{ B} \Phi \text{M}$	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 🗧
0000	0000000	000	000				
Классифика	иция						
Эффект	зы трех пе	рпендикул	яров				

Эффект Холла

 $\mathbf{B} \perp \mathbf{E} \Longrightarrow \mathbf{E_1} \sim [\mathbf{B} \times \mathbf{E}]$

1 Введение		3 Риги-Ледюк	$4 \text{ B} \Phi \text{M}$	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 🕻
0000	0000000	000	000				
Классифика	ация						

Эффекты трех перпендикуляров

Эффект Холла

$$\mathbf{B} \perp \mathbf{E} \Longrightarrow \mathbf{E_1} \sim [\mathbf{B} \times \mathbf{E}]$$

Эффект Риги-Ледюка

$$\mathbf{B} \perp \nabla T \Longrightarrow (\nabla T)_1 \sim [\mathbf{B} \times \nabla T]$$

1 Введение		3 Риги-Ледюк	$4 \text{ B} \Phi \text{M}$	6 Фононный	7 Спиновый	8 Магнонный 🕻
0000	0000000	000	000			
Классифика	ация					

Эффекты трех перпендикуляров

Эффект Холла

$$\mathbf{B} \perp \mathbf{E} \Longrightarrow \mathbf{E_1} \sim [\mathbf{B} \times \mathbf{E}]$$

Эффект Риги-Ледюка

$$\mathbf{B} \perp \nabla T \Longrightarrow (\nabla T)_1 \sim [\mathbf{B} \times \nabla T]$$

Эффект Эттингсхаузена

 $\mathbf{B} \perp \mathbf{E} \Longrightarrow (\nabla T)_1 \sim [\mathbf{B} \times \mathbf{E}]$

1 Введение		3 Риги-Ледюк	$4 \text{ B} \Phi \text{M}$	6 Фононный	7 Спиновый	8 Магнонный 🕻
0000	0000000	000	000			
Классифика	ация					

Эффекты трех перпендикуляров

Эффект Холла

$$\mathbf{B} \perp \mathbf{E} \Longrightarrow \mathbf{E_1} \sim [\mathbf{B} \times \mathbf{E}]$$

Эффект Риги-Ледюка

$$\mathbf{B} \perp \nabla T \Longrightarrow (\nabla T)_1 \sim [\mathbf{B} \times \nabla T]$$

Эффект Эттингсхаузена

 $\mathbf{B} \perp \mathbf{E} \Longrightarrow (\nabla T)_1 \sim [\mathbf{B} \times \mathbf{E}]$

Эффект Нернста-Эттингсхаузена

 $\mathbf{B} \perp \nabla T \Longrightarrow \mathbf{E}_1 \sim [\mathbf{B} \times \nabla T]$

1 Введение	2 В металлах	3 Риги-Ледюк	4 В ФМ	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 3
0000	000000	000	000				
Константа 2	Холла						
Самый	простой ві	ывод					

$$\mathbf{F} = \frac{e}{c} [\mathbf{v} \times \mathbf{B}]$$

1 Введение 0000	2 В металлах •000000	3 Риги-Ледюк 000	4 Β ΦΜ 000	6 Фононный О	7 Спиновый 0	8 Магнонный 3 00
Константа	Холла					
Самый	простой в	LIDOT				

$$\mathbf{F} = \frac{e}{c} [\mathbf{v} \times \mathbf{B}]$$
$$e\mathbf{E} = \frac{e}{c} [\mathbf{B} \times \mathbf{v}]$$

1 Введение 0000	2 В металлах •000000	3 Риги-Ледюк 000	4 Β ΦΜ 000	6 Фононный О	7 Спиновый О	8 Магнонный 00	
Константа 2	Холла						
Солит	maamat a						

Самый простой вывод

$$\mathbf{F} = \frac{e}{c} [\mathbf{v} \times \mathbf{B}]$$
$$e\mathbf{E} = \frac{e}{c} [\mathbf{B} \times \mathbf{v}]$$
$$\mathbf{j} = ne\mathbf{v}; \quad v = \frac{j}{ne}$$

1 Введение 0000	2 В металлах •000000	3 Риги-Ледюк 000	4 Β ΦΜ 000	6 Фононный О	7 Спиновый 0	8 Магнонный 3 00
Константа 2	Холла					
Самый	простой в	ывод				

$$\mathbf{F} = \frac{e}{c} [\mathbf{v} \times \mathbf{B}]$$

$$e\mathbf{E} = \frac{e}{c} [\mathbf{B} \times \mathbf{v}]$$

$$\mathbf{j} = ne\mathbf{v}; \quad v = \frac{j}{ne}$$

$$E_y = \frac{Bv}{c} = \frac{1}{nec} Bj \equiv RBj$$

1 Введение 0000	2 В металлах •000000	3 Риги-Ледюк 000	4 Β ΦΜ 000	6 Фононный О	7 Спиновый 0	8 Магнонный 3 00
Константа 2	Холла					
Самый	простой в	ывод				

$$\mathbf{F} = \frac{e}{c} [\mathbf{v} \times \mathbf{B}]$$

$$e\mathbf{E} = \frac{e}{c} [\mathbf{B} \times \mathbf{v}]$$

$$\mathbf{j} = ne\mathbf{v}; \quad v = \frac{j}{ne}$$

$$E_y = \frac{Bv}{c} = \frac{1}{nec}Bj \equiv RBj$$

$$R = \frac{1}{nec}$$

1 Введение	2 В металлах	3 Риги-Ледюк	4 В ФМ	6 Фононный	7 Спиновый	8 Магнонный 🕻
0000	000000	000	000			00
Константа У	Холла					

$$m\dot{\mathbf{v}} + \frac{m}{\tau}\mathbf{v} = e(\mathbf{E} + \frac{1}{c}[\mathbf{v} \times \mathbf{B}]); \quad \mathbf{v} = \mathbf{v}_D; \quad \dot{\mathbf{v}} = 0;$$

Константа 1	Холла					
0000	000000	000	000			
1 Введение	2 В металлах	3 Риги-Ледюк	4 B ΦM	6 Фононный	7 Спиновый	8 Магнонный

$$m\dot{\mathbf{v}} + \frac{m}{\tau}\mathbf{v} = e(\mathbf{E} + \frac{1}{c}[\mathbf{v} \times \mathbf{B}]); \quad \mathbf{v} = \mathbf{v}_D; \quad \dot{\mathbf{v}} = 0;$$

$$\mathbf{E} = (E_x, E_y, E_z); \quad \mathbf{B} = (0, 0, B)$$

$$\begin{cases} \frac{m}{\tau}v_x &= e(E_x + \frac{v_y B}{c})\\ \frac{m}{\tau}v_y &= e(E_y - \frac{v_x B}{c})\\ \frac{m}{\tau}v_z &= eE_z \end{cases}$$

1 Введение 2 В металлах	3 Риги-Ледюк	4 Β ΦM	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный
Константа Холла	000	000	0	0	0	00

$$m\dot{\mathbf{v}} + \frac{m}{\tau}\mathbf{v} = e(\mathbf{E} + \frac{1}{c}[\mathbf{v} \times \mathbf{B}]); \quad \mathbf{v} = \mathbf{v}_D; \quad \dot{\mathbf{v}} = 0;$$

$$\mathbf{E} = (E_x, E_y, E_z); \quad \mathbf{B} = (0, 0, B)$$

$$\begin{cases} \frac{m}{\tau}v_x &= e(E_x + \frac{v_y B}{c})\\ \frac{m}{\tau}v_y &= e(E_y - \frac{v_x B}{c})\\ \frac{m}{\tau}v_z &= eE_z \end{cases}$$

$$\mathbf{v} = (v, 0, 0); \quad j = nev;$$

$$\begin{cases} \frac{m}{\tau}v &= eE_x \implies j = \frac{ne^2\tau}{m}E_x\\ 0 &= e(E_y - \frac{vB}{c}) \implies E_y = \frac{vB}{c} = \frac{1}{nec}Bj = RBj\\ 0 &= eE_z \end{cases}$$

1 Введение **2 В металлах** 3 Риги-Ледюк 4 В ФМ 5 Бинакер 6 Фононный 7 Спиновый 8 Магнонный 3 0000 0•00000 000 000 0 0 0 0 0 0 00 Константа Холла

$$m\dot{\mathbf{v}} + \frac{m}{\tau}\mathbf{v} = e(\mathbf{E} + \frac{1}{c}[\mathbf{v} \times \mathbf{B}]); \quad \mathbf{v} = \mathbf{v}_D; \quad \dot{\mathbf{v}} = 0;$$

$$\mathbf{E} = (E_x, E_y, E_z); \quad \mathbf{B} = (0, 0, B)$$

$$\begin{cases} \frac{m}{\tau}v_x &= e(E_x + \frac{v_y B}{c})\\ \frac{m}{\tau}v_y &= e(E_y - \frac{v_x B}{c})\\ \frac{m}{\tau}v_z &= eE_z \end{cases}$$

$$\mathbf{v} = (v, 0, 0); \quad j = nev;$$

$$\begin{cases} \frac{m}{\tau}v &= eE_x \implies j = \frac{ne^2\tau}{m}E_x\\ 0 &= e(E_y - \frac{vB}{c}) \implies E_y = \frac{vB}{c} = \frac{1}{nec}Bj = RBj\\ 0 &= eE_z \end{cases}$$

$$R = \frac{1}{nec}$$

Стандартный вывод

$$\begin{split} f &= f(t, \mathbf{r}, \mathbf{V}) \\ &\frac{df}{dt} = \frac{\partial f}{\partial t} + \mathbf{V} \frac{\partial f}{\partial \mathbf{r}} + \mathbf{F} \frac{\partial f}{\partial \mathbf{p}} = -Stf \\ &V_i \frac{\partial}{\partial r_i} f + (eE_i + \frac{e}{c} [\mathbf{V} \times \mathbf{B}]_i) \frac{\partial}{\partial p_i} f + Stf = 0, \quad f = f^{(0)} + f^{(1)} \quad (1) \\ &\mathbf{J} \parallel x, \quad \mathbf{B} \parallel z; \text{ линейное приближение по } E: \end{split}$$

$$eE_i\frac{\partial f^{(0)}}{\partial p_i} + \frac{e}{c}[\mathbf{V} \times \mathbf{B}]_i\frac{\partial f^{(1)}}{\partial p_i} + Stf^{(1)} = 0$$
(2)

Первый член для распределения Ферми: $-eE_iV_i\left|\frac{\partial f^{(0)}}{\partial \varepsilon}\right|$. Обозначения:

$$f^{(1)} = eE_{i}\chi_{i} \left| \frac{\partial f^{(0)}}{\partial \varepsilon} \right|, \quad Stf^{(1)} = \left| \frac{\partial f^{(0)}}{\partial \varepsilon} \right| eE_{i}\hat{\Omega}\chi_{i}, \quad \hat{\Lambda} = \frac{e}{c} [\mathbf{V} \times \mathbf{B}]_{l} \frac{\partial}{\partial p_{l}}$$
$$eE_{i} \left| \frac{\partial f^{(0)}}{\partial \varepsilon} \right| \text{ сокращается, } (2) \Rightarrow$$
$$V_{i} = \left(\hat{\Lambda} + \hat{\Omega} \right) \chi_{i} \tag{3}$$

1 Введение	2 В металлах	3 Риги-Ледюк	4 В ФМ	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 🕻
0000	0000000	000	000				
Константа 2	Холла						

Стандартный вывод

 $\widehat{\Omega}$ — оператор столкновений; $\Omega_{ik} = \Omega_{ki}, \ Det \widehat{\Omega} > 0.$

Приближение времени релаксации: $\widehat{\Omega} \simeq 1/\tau$.

$$J_{i} = \sum_{p\sigma} eV_{i}f = e^{2}E_{k}\sum_{p\sigma}V_{i}\chi_{k} \left|\frac{\partial f^{(0)}}{\partial\varepsilon}\right| = e^{2} \langle V_{i}\chi_{k}\rangle E_{k},$$

где $\langle ... \rangle$ — усреднение около поверхности Ферми

$$\langle \dots \rangle = \sum_{p\sigma} \left| \frac{\partial f^{(0)}}{\partial \varepsilon} \right| (\dots)$$

⇒ Тензор электропроводности

$$\sigma_{ik} = e^2 \left\langle \chi_k V_i \right\rangle \tag{4}$$

$$\Rightarrow \quad \sigma_{ik} = e^2 \langle \chi_k (\hat{\Omega} + \hat{\Lambda}) \chi_i \rangle = \sigma_{ik}^{(+)} + \sigma_{ik}^{(-)} \tag{5}$$

1 Введение	2 В металлах	3 Риги-Ледюк	4 В ФМ	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000				
Константа 2	Холла						

Стандартный вывод

$$\sigma_{ik}^{(+)} = e^2 \left\langle \chi_k \hat{\Omega} \chi_i \right\rangle \tag{6}$$

 $\sigma_{ik}^{(+)}$ — симметричный тензор, не содержит нечетных по ${f B}$ членов

$$\sigma_{ik}^{(-)} = e^2 \left\langle \chi_k \hat{\Lambda} \chi_i \right\rangle = \frac{e^3}{c} \left\langle \chi_k [\mathbf{V} \times \mathbf{B}]_l \frac{\partial \chi_i}{\partial p_l} \right\rangle \tag{7}$$

В $\sigma_{ik}^{(-)}$ достаточно нулевого по полю χ (длина свободного пробега):

$$\chi_i^{(0)} = L_i = \Omega_{ik}^{-1} V_k \tag{8}$$

Холловская проводимость в слабом поле $\mathbf{B} \parallel z$ задается величиной

$$\sigma_{xy}^{(-)} = \frac{e^3 B}{2c} \{ \langle L_y V_y \frac{\partial L_x}{\partial p_x} \rangle - \langle L_y V_x \frac{\partial L_x}{\partial p_y} \rangle + \langle L_x V_x \frac{\partial L_y}{\partial p_y} \rangle - \langle L_x V_y \frac{\partial L_y}{\partial p_x} \rangle \}$$

В τ -приближении $L_i = \tau V_i \implies$

$$\sigma_{xy}^{(-)} = \frac{e^3 \tau^2 B}{2c} \left\{ \langle V_x^2 \frac{\partial V_y}{\partial p_y} \rangle + \langle V_y^2 \frac{\partial V_x}{\partial p_x} \rangle - 2 \langle V_x V_y \frac{\partial V_x}{\partial p_y} \rangle \right\}$$
(9)

Вишневка-2015 11/26

1 Введение	2 В металлах	3 Риги-Ледюк	4 Β ΦΜ	6 Фононный	7 Спиновый	8 Магнонный
0000	00000●0	000	000	О	0	00
Константа 2	Холла					

Связь с кривизной

Сечение поверхности Φ ерми плоскостью $\perp z$ в точке \mathbf{p} имеет кривизну

$$K_{z}(\mathbf{p}) = \frac{2\varepsilon_{x}\varepsilon_{y}\varepsilon_{xy} - \varepsilon_{x}^{2}\varepsilon_{yy} - \varepsilon_{y}^{2}\varepsilon_{xx}}{(\varepsilon_{x}^{2} + \varepsilon_{y}^{2})^{3/2}}$$
$$\varepsilon_{i} = \partial\varepsilon/\partial p_{i} = V_{i}, \quad \varepsilon_{ik} = \frac{\partial V_{k}}{\partial p_{i}} \Rightarrow K_{z}(\mathbf{p}) = \frac{2V_{x}V_{y}\varepsilon_{xy} - V_{x}^{2}\varepsilon_{yy} - V_{y}^{2}\varepsilon_{xx}}{V_{\parallel}^{3}}$$

⇒ поперечная проводимость — взвешенное среднее от кривизны:

$$\sigma_{xy}^{(-)} = -\frac{\tau^2 e^3 B}{2c} \langle V_{\parallel}^3 K_z \rangle, \quad V_{\parallel}^2 = V_x^2 + V_y^2$$

Отсюда константа Холла $\rho_{yx} = RB = \frac{\sigma_{xy}^{(-)}}{\sigma_{xx}^{(+)}\sigma_{yy}^{(+)}}$

Для кубического кристалла

$$\sigma_{xy}^{(-)} = -\frac{\tau^2 e^3 B}{6c} \langle V^3 k_3 \rangle$$

где k_3 — сумма главных кривизн трехмерной поверхности

$$k_3 = (\varepsilon_{\gamma}^2)^{-3/2} (\varepsilon_{\alpha} \varepsilon_{\beta} \varepsilon_{\alpha\beta} - \varepsilon_{\alpha} \varepsilon_{\alpha} \varepsilon_{\beta\beta})$$

Вишневка-2015 12/26

1 Введение	2 В металлах	3 Риги-Ледюк	4 В ФМ	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный 🗧			
0000	0000000	000	000							
Коэффициент Холла										
Отклонения от $R=1/nec=Const$										

Отклонения от R = 1/nec = Const

Даже в au-приближении не всегда R=1/nec

Другие выражения, если поверхность Ферми далека от сферы. Пример 1: $\varepsilon = -t[cos(p_x) + cos(p_y)] \Rightarrow R \sim (n - n_{0.5})$ Пример 2: Квадратная канава с ямами Вообще любое изменение топологии поверхности Ферми

Отклонения от R = 1/nec = Const

Даже в au-приближении не всегда R=1/nec

Другие выражения, если поверхность Ферми далека от сферы. Пример 1: $\varepsilon = -t[cos(p_x) + cos(p_y)] \Rightarrow R \sim (n - n_{0.5})$ Пример 2: Квадратная канава с ямами Вообще любое изменение топологии поверхности Ферми

Константа Холла была константой ~ до середины 1980-х годов

А теперь она не константа. Ей мешают:

- Сильная анизотропия
- Близкие плоские участки поверхности Ферми
- Плохая размерность
- Нестандартные квазичастицы (пример спиновый полярон)

Коэффициент Холла

Отклонения от R = 1/nec = Const

Даже в au-приближении не всегда R=1/nec

Другие выражения, если поверхность Ферми далека от сферы. Пример 1: $\varepsilon = -t[cos(p_x) + cos(p_y)] \Rightarrow R \sim (n - n_{0.5})$ Пример 2: Квадратная канава с ямами Вообще любое изменение топологии поверхности Ферми

Константа Холла была константой ~ до середины 1980-х годов

А теперь она не константа. Ей мешают:

- Сильная анизотропия
- Близкие плоские участки поверхности Ферми
- Плохая размерность
- Нестандартные квазичастицы (пример спиновый полярон)

И что тогда делать

- Решать задачу численно
- Найти подходящий квантовый симулятор
- Аккуратнее решать уравнение Больцмана, например, методом моментов

1 Введение 0000	2 В металлах 0000000	3 Риги-Ледюк ●00	4 Β ΦΜ 000	6 Фононный О	7 Спиновый О	8 Магнонный 00	
Тепловой ан	алог эффекта	Холла					

Поперечная теплопроводность в металлах

Поперечная теплопроводность в металлах

Эффект Риги-Ледюка

$$\mathbf{B} \perp \nabla T \Longrightarrow (\nabla T)_1 \sim [\mathbf{B} \times \nabla T]$$

 1 Введение
 2 В металлах
 3 Риги-Ледюк 4 В ФМ
 5 Бинакер
 6 Фононный
 7 Спиновый
 8 Магнонный
 9 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0000
 000</th

Поперечная теплопроводность в металлах

Эффект Риги-Ледюка

$\mathbf{B} \perp \nabla T \Longrightarrow (\nabla T)_1 \sim [\mathbf{B} \times \nabla T]$

- Righi A. "Sulla Conducibilitá Calorica del Bismuto posto in un Campo Magnetico", Mem. Acc. Lincei 4, 433 (1887)
- Leduc S A., "Sur la conductibilité calorifique du bismuth dans un champ magnétique et la déviation des lignes isothermes", J. Phys. 2e serie 6, 378 (1887)

Поперечная теплопроводность в металлах

Эффект Риги-Ледюка

$\mathbf{B} \perp \nabla T \Longrightarrow (\nabla T)_1 \sim [\mathbf{B} \times \nabla T]$

- Righi A. "Sulla Conducibilitá Calorica del Bismuto posto in un Campo Magnetico", Mem. Acc. Lincei 4, 433 (1887)
- Leduc S A., "Sur la conductibilité calorifique du bismuth dans un champ magnétique et la déviation des lignes isothermes", J. Phys. 2e serie 6, 378 (1887)
- * Righi A. Trans. Acc. Lincei (3) 7, 262 (1883)
- * Righi A. Mem. Acc. Sci. Bologna (4) 5, 115 (1883)
- * Righi A. Trans. Acc. Lincei. (3) 8, 331 (1884)
- * Righi A. Mem. Acc. Lincei. (3) 19, 545 (1884)
- * Leduc S A. Compt. Rend. 98, 673 (1884)
- * Leduc S A. Lum. Électr. 13, 510 (1884)
- * Leduc S A. Compt. Rend. 102, 358 (1886)

1 Введение		3 Риги-Ледюк	4 B ΦM	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000				
Тепловой ан	налог эффекта	Холла					

Поперечная теплопроводность в металлах

$$V_i \frac{\partial}{\partial r_i} f + (eE_i + \frac{e}{c} [\mathbf{V} \times \mathbf{B}]_i) \frac{\partial}{\partial p_i} f + Stf = 0, \quad f = f^{(0)} + f^{(1)}$$
(10)

В линеаризованном уравнении Больцмана первый член

$$(\mathbf{V}\nabla) f^{(0)} = (\varepsilon - \mu) (\mathbf{V}\nabla \ln T) \left| \frac{\partial f^{(0)}}{\partial \varepsilon} \right|$$

и уравнение Больцмана принимает вид

$$\left(\varepsilon - \mu\right) \left(\mathbf{V}\nabla \ln T\right) \left| \frac{\partial f^{(0)}}{\partial \varepsilon} \right| + \frac{e}{c} [\mathbf{V} \times \mathbf{B}]_i \frac{\partial f^{(1)}}{\partial p_i} + St f^{(1)} = 0 \qquad (11)$$

Поперечная теплопроводность в металлах

Обозначения

$$\widetilde{V}_i = (\varepsilon - \mu) V_i, \ f^{(1)} = (\nabla \ln T)_i \chi_i \left| \frac{\partial f^{(0)}}{\partial \varepsilon} \right|$$

сводят задачу к задаче Холла, только вместо ј следует найти q

$$q_{i} = \sum_{p\sigma} \left(\varepsilon - \mu\right) V_{i} f = \left\langle \widetilde{V}_{i} \chi_{k} \right\rangle \left(\nabla \ln T\right)_{k}$$

Красное уравнение заменяется на

$$\widetilde{V}_i = (\hat{\Lambda} + \hat{\Omega})\chi_i.$$
(12)

а $\sigma_{ik}^{(-)}$ заменяется на

$$\varkappa_{ik}^{(-)} = -\frac{1}{T} \langle \chi_k^{(0)} \hat{\Lambda} \chi_i^{(0)} \rangle, \qquad (13)$$

где $\chi_i^{(0)}-$ решение уравнения Больцмана без магнитного поля

$$\widetilde{V}_i = \hat{\Omega}\chi_i^{(0)}$$

Дальше все абсолютно аналогично задаче Холла.

Вишневка-2015 16/26

- Kikoin I. K., Physik. Z. Sowjetunion 9, 1 (1936)
- Кикоин И. К., ЖЭТФ 10, 1242 (1940)

- Kikoin I. K., Physik. Z. Sowjetunion 9, 1 (1936)
- Кикоин И. К., ЖЭТФ 10, 1242 (1940)

Простейший — очевидный — механизм аномального эффекта Холла: эффективное поле Вейсса $\mathbf{B}^{M} = \gamma \mathbf{M}$ вместо внешнего поля **B**.

В красном уравнении вместо члена с силой Лоренца —

$$\hat{\Lambda}^{M} = \frac{e}{c} [\mathbf{V} \times \gamma \mathbf{M}]_{a} \frac{\partial}{\partial p_{a}}$$
(14)

и поперечная компонента электросопротивления принимает вид

$$\rho_{yx}^{M} = \frac{\gamma M}{Nec} \tag{15}$$

Это — <u>динамический</u> механизм — результат влияния средней намагниченности на траекторию электрона проводимости.

<u>Диссипативный</u> механизм — спин-орбитальное рассеяние электронов проводимости на флуктуациях магнитных моментов электронов внутренних оболочек. Нужно заборновское приближение, квадратичное по потенциальному взаимодействию с примесями $H^{(imp)}$ и линейное по $H^{(sl)} \sim \mathbf{SL}$.

По-простому — существует механизм рассеяния, линейный М.

Выбросим динамический механизм и учтем, кроме потенциального рассеяния $\hat{\Omega}^{(0)}$, линейный по **М** вклад $\hat{\Omega}^{(sl)}$.

$$V_i = (\hat{\Omega}^{(0)} + \hat{\Omega}^{(sl)})\chi_i,$$
(16)

Тензор электропроводности

$$\sigma_{ik} = e^2 \langle V_i \chi_k \rangle = e^2 \langle \chi_k \left(\hat{\Omega}^{(0)} + \hat{\Omega}^{(sl)} \right) \chi_i \rangle = \sigma_{ik}^{(0)} + \sigma_{ik}^{(sl)}$$
(17)

 $\sigma_{ik}^{(0)} = rac{e^2}{\tau} \left< \chi_k \chi_i \right> -$ симметричный тензор, четный по **М**.

Тензор

$$\sigma_{ik}^{(sl)} = e^2 \langle \chi_k \hat{\Omega}^{(sl)} \chi_i \rangle \tag{18}$$

ведет себя при поворотах системы координат как произведение двух полярных векторов (χ) и линеен по **M**. Поэтому вектор **M** есть дуальный вектор для тензора $\langle \chi_k \hat{\Omega}^{(sl)} \chi_i \rangle \Rightarrow$

$$\sigma_{ik}^{(sl)} = \beta e_{ikl} M_l, \ \sigma_{yx}^{(sl)} = -\beta M \tag{19}$$

Ниже температуры Кюри вектор \mathbf{M} — спонтанный магнитный момент, в парамагнитной области $\mathbf{M} = \chi \mathbf{H}$.

Чтобы определить, какой из механизмов важнее, надо вычислить коэффициенты γ и β , выбрав конкретную модель.

1 Введение 2 В металлах 3 Риги-Ледюк 4 В ФМ **5 Бинакер** 6 Фононный 7 Спиновый 8 Магнонный 3 0000 000000 000 000 ● 0 0 00 Еще один тепловой аналог эффекта Холла

Поперечная теплопроводность в газах несферических молекул

- Senftleben H., Phys. Z. 31, 822 (1930)
- Senftleben H. Phys. Z. 31, 961 (1930)
- Beenakker J. et al., Phys. Lett. 2, 5 (1962)
- Hermans L J F. et al., Phys. Lett. A 25, 81 (1967)
- Горелик Л. Л. et al., Письма в ЖЭТФ 4, 456 (1966)

1 Введение 2 В металлах 3 Риги-Ледюк 4 В ФМ **5 Бинакер** 6 Фононный 7 Спиновый 8 Магнонный 3 0000 0000000 000 000 ● 0 0 00 Еще один тепловой аналог эффекта Холла

Поперечная теплопроводность в газах несферических молекул

- Senftleben H., Phys. Z. 31, 822 (1930)
- Senftleben H. Phys. Z. 31, 961 (1930)
- Beenakker J. et al., Phys. Lett. 2, 5 (1962)
- Hermans L J F. et al., Phys. Lett. A 25, 81 (1967)
- Горелик Л. Л. et al., Письма в ЖЭТФ 4, 456 (1966)

Диссипативный механизм

Прецессия вращательных моментов в магнитном поле меняет интеграл столкновений 1 Введение 2 В металлах 3 Риги-Ледюк 4 В ФМ 5 Бинакер 6 Фононный 7 Спиновый 8 Магнонный 3 0000 0000000 000 000 ● 0 0 00 Еще один тепловой аналог эффекта Холла

Поперечная теплопроводность в газах несферических молекул

- Senftleben H., Phys. Z. 31, 822 (1930)
- Senftleben H. Phys. Z. 31, 961 (1930)
- Beenakker J. et al., Phys. Lett. 2, 5 (1962)
- Hermans L J F. et al., Phys. Lett. A 25, 81 (1967)
- Горелик Л. Л. et al., Письма в ЖЭТФ 4, 456 (1966)

Диссипативный механизм

Прецессия вращательных моментов в магнитном поле меняет интеграл столкновений

Динамический механизм

Прецессия влияет на член с векторным произведением

в левой стороне уравнения Больцмана

1 Введение 2 В металлах 3 Риги-Ледюк 4 В ФМ **5 Бинакер** 6 Фононный 7 Спиновый 8 Магнонный 3 0000 0000000 000 000 ● 0 0 00 Еще один тепловой аналог эффекта Холла

Поперечная теплопроводность в газах несферических молекул

- Senftleben H., Phys. Z. 31, 822 (1930)
- Senftleben H. Phys. Z. 31, 961 (1930)
- Beenakker J. et al., Phys. Lett. 2, 5 (1962)
- Hermans L J F. et al., Phys. Lett. A 25, 81 (1967)
- Горелик Л. Л. et al., Письма в ЖЭТФ 4, 456 (1966)

Диссипативный механизм

Прецессия вращательных моментов в магнитном поле меняет интеграл столкновений

Динамический механизм

Прецессия влияет на член с векторным произведением

в левой стороне уравнения Больцмана

Аналогичный эффект возможен в твердых тел, в которых молекулы, осциллирующие около узлов решетки, могут свободно вращаться

- Strohm C. et. al., Phys. Rev. Lett. 95, 155901 (2005)
- Инюшкин А. В. et. al., Письма в ЖЭТФ 86, 436 (2007)
- Инюшкин А. В., Талденков А. Н., ЖЭТФ 138, 862 (2010)

- Strohm C. et. al., Phys. Rev. Lett. 95, 155901 (2005)
- Инюшкин А. В. et. al., Письма в ЖЭТФ 86, 436 (2007)
- Инюшкин А. В., Талденков А. Н., ЖЭТФ 138, 862 (2010)

Динамический механизм

Магнитное поле через спины атомов решетки влияет на поляризацию фононов,

а это меняет тепловой поток

- Strohm C. et. al., Phys. Rev. Lett. 95, 155901 (2005)
- Инюшкин А. В. et. al., Письма в ЖЭТФ 86, 436 (2007)
- Инюшкин А. В., Талденков А. Н., ЖЭТФ 138, 862 (2010)

Динамический мех<u>анизм</u>

Магнитное поле через спины атомов решетки влияет на поляризацию фононов,

а это меняет тепловой поток

Диссипативный мех<u>анизм</u>

Очень сложный

1 Введение 0000	2 В металлах 0000000	3 Риги-Ледюк 000	4 Β ΦΜ 000	6 Фононный О	7 Спиновый ●	8 Магнонный 3 00
Спиновый а	аналог эффекта	а Холла				
Попереч	ный пото	к спинов				

- Дьяконов М. И. et. al., Письма в ЖЭТФ 13, 657 (1971)
- Dyakonov M. I., Perel V. I., Phys. Lett. A 35, 459 (1971)

- Дьяконов М. И. et. al., Письма в ЖЭТФ 13, 657 (1971)
- Dyakonov M. I., Perel V. I., Phys. Lett. A 35, 459 (1971)

Как и в аномальном эффекте Холла, не требуется В

Эффект возникает из-за анизотропии рассеяния электронов на кулоновских центрах, вызванной спин-орбитальным взаимодействием. При протекании тока электроны со спином вверх преимущественно рассеиваются направо, а со спином вниз – налево.

- Дьяконов М. И. et. al., Письма в ЖЭТФ 13, 657 (1971)
- Dyakonov M. I., Perel V. I., Phys. Lett. A 35, 459 (1971)

Как и в аномальном эффекте Холла, не требуется В

Эффект возникает из-за анизотропии рассеяния электронов на кулоновских центрах, вызванной спин-орбитальным взаимодействием. При протекании тока электроны со спином вверх преимущественно рассеиваются направо, а со спином вниз – налево.

- Kato Y K. et al., Science 306, 1910 (2004)
- Wunderlich J. et al. Phys. Rev. Lett. 94, 047204 (2005)
- Zhao H. et al. Phys. Rev. Lett. 96, 246601 (2006)
- Saitoh E. et al. Appl. Phys. Lett. 88, 182509 (2006)
- Valenzuela S O., Tinkham M., Nature 442, 176 (2006)
- Kimura T et al. Phys. Rev. Lett. 98, 156601 (2007)

Эффект Холла, вызванный киральностью

- Fujimoto S., Phys. Rev. Lett. 103, 047203 (2009)
- Katsura H., Nagaosa N., Lee P A., PRL 104, 066403 (2010)
- Onose Y. et al., Science 329, 297 (2010)
- Taguchi Y. et al., Science 291, 2573 (2001)
- Taguchi Y. et al., J. Phys.: Condens. Matter 16, S599 (2004)
- Machida Y. et al., Phys. Rev. Lett. 98, 057203 (2007)
- Martin I., Batista C D., Phys. Rev. Lett. 101, 156402 (2008)
- Neubauer A. et al., Phys. Rev. Lett. 102, 186602 (2009)
- Akagi Y., Motome Y. J. Phys. Soc. Jpn. 79, 083711 (2010)
- Kanazawa N. et al., Phys. Rev. Lett. 106, 156603 (2011)
- Ueland B G. et al., Nat. Commun. 3, 1067 (2012)

Вместо магнитной силы Лоренца (или в дополнение к ней) — спиновая киральность, определяемая для трех узлов i, j, k как

$$\mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k).$$

Из-за набега фазы при обходе контура *i*, *j*, *k* ненулевая киральность эквивалентна магнитному полю.

Причины ненулевой киральности:

- Фрустрация
 - геометрическая, как в треугольной решетке, решетке Кагоме...
 - вызванная конкуренцией ближайшего и заближайших взаимодействий
- Взаимодействие Дзялошинского-Мории

1 Введение		3 Риги-Ледюк	4 B ΦM	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000			00

1 Введение		3 Риги-Ледюк	4 B ΦM	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000				00

Геометрически "эффекты Холла" одинаковы

одинаковы и "верхние" уравнения, механизмы разные

1 Введение		3 Риги-Ледюк	4 B ΦM	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000				

Геометрически "эффекты Холла" одинаковы

одинаковы и "верхние" уравнения, механизмы разные

У уравнения Больцмана

есть левая и правая части; соответственно,

возможны два вида механизма поперечных эффектов динамический и диссипативный

1 Введение		3 Риги-Ледюк	4 B ΦM	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000				

Геометрически "эффекты Холла" одинаковы

одинаковы и "верхние" уравнения, механизмы разные

У уравнения Больцмана

есть левая и правая части; соответственно,

возможны два вида механизма поперечных эффектов динамический и диссипативный

au-приближение —

это и в самом деле приближение, и оно не обязано работать всегда

1 Введение		3 Риги-Ледюк	4 B ΦM	5 Бинакер	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000				

Геометрически "эффекты Холла" одинаковы

одинаковы и "верхние" уравнения, механизмы разные

У уравнения Больцмана

есть левая и правая части; соответственно,

возможны два вида механизма поперечных эффектов динамический и диссипативный

au-приближение —

это и в самом деле приближение,

и оно не обязано работать всегда

Эффекты Холла

еще не закончились,

вполне могут быть обнаружены новые

1 Введение		3 Риги-Ледюк	4 B ΦM	6 Фононный	7 Спиновый	8 Магнонный
0000	0000000	000	000			00

Спасибо за внимание!