
Main question to be studied:
How the angular oscillations of magnetoresistance (MR) 
interfere with (or influence on) the magnetic quantum 
oscillations (MQO) of interlayer MR.
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Layered quasi-2D metals
Introduction

Electron dispersion in the tight-binding 
approximation  is highly anisotropic:
ε(p)=εll(pll)+2tz cos(pzd/ℏ), 

 tz<<EF

2D electron gas
Magnetic 
field B

2D electron gas

2D electron gas

Electron wave functions overlap leads to 
the finite interlayer transfer integral tz

Fermi surface in layered Q2D 
metals is a warped cylinder. 
The size of warping W=4tz ~ ћωc

Landau levels
B

Extremal
cross 
sections

(Examples: heterostructures, organic metals, all high-Tc superconductors)

zz

(coherent-tunneling, 
conserving p||)

FS

2

εll(pll)=p2
ll/2m ll

Two close frequencies => beats of MQO 





Angle-dependent magnetoresistance 
oscillations (AMRO) in quasi-2D metals.

For axially symmetric dispersion and in the first 
order in tz the Shockley tube integral gives:
[R. Yagi et al., J. Phys. Soc. Jap. 59, 3069 (1990)]

gives AMRO

Yamaji angles

Introduction

First theory: 
K.J. Yamaji, 
Phys. Soc. 
Jpn.  58, 1520, 
(1989).

AMRO

Fermi surface

LLs

B

First observation:
M.V. Kartsovnik, P. A. 
Kononovich, V. N. 
Laukhin, I. F. Schegolev,
JETP Lett. 48, 541 (1988).

gives damping of 
AMRO by disorder
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σ
zz3D =e2 τ∑

FS

vz
2 , v z=∂ ε /∂ pz



Origin of magnetic quantum oscillations in metals 
For parabolic electron 
dispersion in zero magnetic 
field 
ε(p)= px

2 /2mx + py
2 /2my +pz

2 /
2mz, in magnetic field directed 
along z-axis the dispersion 
relation is
ε(n,pz)=ћωc(n+1/2)+pz

2/2mz,
where ωc=eB/mc (Landau level 
quantization).
As the magnetic field increases 
the Landau levels periodically 
cross Fermi level. 
This results in magnetic quantum oscillations 
(MQO) of thermodynamic (DoS, magnetization) 
and transport electronic properties of metals.

Introduction.

In 3D the DoS oscillations are weak, 
because the integration over pz 
smears them out. 

In 2D the DoS oscillations can be 
strong and sharp, leading to the sharp 
and non-sinusoidal MQO.
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Lifshitz-Kosevich formula for MQO

M ∝eF √H / A ''∑
p= 1

∞

p−3 /2 sin [2 πp( F
H

−
1
2 )± π

4 ]RT ( p )RD ( p )RS ( p ) ,

F=chAextr / (2 π ) e,

RT ( p )=πκp /sinh( πκp ) ,

where the dHvA fundamental frequency

The temperature damping factor 

κ≡2 π kB T /hωC , ωC =eH /m∗c .

The scattering (Dingle) damping factor RD( p)=exp (−πp
τωC

)=exp (−2 π 2 T D p

ωC
) ,

is the mean free scattering time.τ=h / (2 π )2 k B T D

The spin factor

Quantum oscillations of magnetization (de Haas – van Alphen effect)

Introduction. 5

only difference between 3D and 2D ? [D. Shoenberg]



General motivation

Layered compounds are very common: high-Tc cuprates, pnictides, 
organic metals, intercalated graphites, heterostructures, etc. 
Magnetoresistance (MQO and AMRO) is used to measure the quasi-
particle dispersion, Fermi surface, effective mass, mean scattering time.
It is an important complementary tool to ARPES.

Motivation 6

Our task is to investigate the interplay between angular and 
magnetic quantum oscillations (MQO), i.e. to calculate the MQO 
of magnetoresistance taking into account angular oscillations 
and find out if the false spin zeros are possible.

Aim:



The calculated angular dependence of the interlayer 
conductivity for spin-up component ( dashed green line), 
spin-down component (dotted red line), and the their sum 
(solid blue line) for the g-factor g=2 for Gaussian LL shape.
Expected false spin-zeroes at angle θ ≈ 32◦, 44◦, 58◦, ... 

Result of calculation of interlayer 
conductivity in the isolated LL 
approximation [Tsunea Ando,  
J. Phys. Soc. Jpn. 36, 1521 (1974)]

False spin zeros 
(very strange!)

Incorrect, as will be shown later!

Motivation

True spin zeros (when MQO for opposite 
spin orientations are shifted by phase )



The two-layer tunneling model
The Hamiltonian contains 3 terms:

1. The 2D free electron Hamiltonian in 
magnetic field summed over all layers:

2. The coherent electron tunneling between any two adjacent layers:

3. The short-range 
impurity potential:

where

2D electron gas

2D electron gas

2D electron gas
1             2             3

Model 8

Magnetic 
field B

zz

0 ≳  ℏc >>  tz  [A.D. Grigoriev, P.D. Grigoriev, Физ. низких темп. 40(4), 472 (2014) ]



Impurity averaging

The impurity distributions on two adjacent layers are uncorrelated, 
and the vertex corrections are small by the parameter tZ/EF=>

σ zz=
4 e2 t z

2d

Lx Ly
∫ d2rd2 r'∫

dε
2π

[−nF
′
(ε )] ⟨ Im G(r, r ', j, ε )⟩ ⟨ Im G(r ', r, j+1, ε )⟩ .

2D electron gas

2D electron gas

2D electron gas

zz

i

tz
tz

i±1

x
x x

Contain extra 
power of tZ/EF 

Vertex corrections can be ignored 

The calculation of interlayer 
conductivity reduces to 2D electron 

Green’s function
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Calculation of the angular dependence of MR

σ zz=
e2 t z

2 d

Lx L y
∫ d2 rd2 r'∫

dε
2π

⟨ A (r,r',j, ε )⟩ ⟨ A (r',r,j+1,ε )⟩ [−n'F (ε ) ] ,

B= (Bx , 0, B z )=( B sin θ, 0, B cosθ )In tilted magnetic field  
the vector potential is           , the electron wave 
functions on adjacent layers acquire the coordinate-dependent phase 
difference    and the Green’s functions 
acquire the phase 

A= (0, xB z−zBx , 0 )

Λ (r )=− yBx d=− yBd sin θ,
GR(r, r', j+1, ε )=G R(r, r', j, ε )exp { ie [ Λ (r )−Λ (r' ) ] } ,

A(r, r ', j, ε )=i [G A(r, r ', j, ε )−GR(r, r ', j, ε )] .where the spectral function

σ zz=
2 e2 t z

2 d

ℏ
∫∫ dε

2π
d2 r [−n' F (ε ) ] [G2 (r,ε )cos( eByd

h/2π
sin θ)−Re[GR

2 (r,ε )exp( ieByd
h /2π

sin θ)]] .
The expression for conductivity has the form:

GRGA New term! GRGR

The impurity averaging on adjacent layers can be done independently:
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[started in P. Moses and R. H. McKenzie, Phys. Rev. B 60, 7998 (1999).]
P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011), P. D. Grigoriev, T. I. Mogilyuk
Phys. Rev. B 90, 115138 (2014)



Angular dependence of harmonic amplitudes 
for arbitrary LL shapes
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(P. D. Grigoriev, T. I. Mogilyuk, Phys. Rev. B 90, 115138 (2014) )

where     and the Laguerre polynomials

The angular dependence of interlayer conductivity is given by 
a double sum over Landau levels:



Angular dependence of MQO amplitudes 
is given not only by the spin-zero factor
 

Angular dependence of harmonic amplitudes 
 with AMRO for Lorentzian LL shapes
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For Gaussian LL shape the p0 terms are exponentially small at C >> 1, 

which leads to a strong enhancement of AMRO amplitudes.

! τ=τ0 (Γ 0 /Γ )∝1/√B cos θ

For Lorentzian LL shape:



The angular dependence of normalized interlayer conductivity for Lorentzian LL
With four different values                           (thin solid green curve), 10/3 
(dashed red curve), 5/3 (dotted blue curve), and 1 (dash-dotted purple curve). 
The other parameters 
which for cyclotron mass                      and for              corresponds to                    

k F d = 3, μ = 605 K, T=3 K, B0≈11.6T,
ℏ ωc=10 Km=me θ=0

ωc τ0=10

Weak magnetic quantum oscillations in the presence of AMRO

AMRO



The 2D electron Green’s function with disorder in Bz

GR ( E, n )=
E+Eg (1−ci )±√ (E−E1) ( E−E2)

2 E Eg

,

G(r1 ,r2 ,ε )= ∑
n,k y ,k'

y

Ψ n, k y

0* (r 2) Ψ n,k' y

0
(r1 )G (ε,n ) ,

The point-like impurities are included in 
the “non-crossing” approximation, which 
gives:  

where, if Landau levels do not overlap, Tsunea Ando,  J. Phys. 
Soc. Jpn. 36, 1521 (1974)

E1 =Eg (√c i−1)
2
, E2=Eg (√c i+1)

2
, Eg =V 0 /2 π lHz

2
∝B,

c i=2 π lHz
2 N i =N i /N LL .

The density of states on each LL 
has a dome-like shape:

D ( E )=−
Im GR ( E )

π
=

√( E−E1 ) (E2−E )
2 π|E| Eg

,

Density of states

E

D(E)

Bare LL
Broadened LL

c i>1

c i=2 π lHz
2 N i =N i /N LL .

LL width

In this approximation we obtain false spin zeros! (very strange)

14Isolated LL:
approxi-
mation

where



The 2D electron Green’s function with disorder in Bz

The point-like impurities are included in the 
“non-crossing” approximation, which gives: 
 

where
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where

The system of equations in SCBA (self-consistent Born approximation) becomes

At 0 ~ ℏc one cannot consider each LL separately, =>

G(r1 ,r2 ,ε )= ∑
n, k y , k'

y

Ψ n, k y

0* (r2 )Ψ n, k' y

0
(r1 )G ( ε,n ) ,

In SCBA with many LLs the false spin zeros are absent

Results A 



Green’s functions of one Landau level G(ε, n)

Approximation of isolated LLs: Im ()0 only near the n-th LL 
[Tsunea Ando,  J. Phys. Soc. Jpn. 36, 1521 (1974)]

Contribution to the total Green’s 
function from each Landau level

The total Green’s function 

ImG(ε, n)

ImG(ε, n)

When many LLs are included, () is periodic, which gives

ε

ε

! gives false spin-zeros

does not give false spin-zeros



Angular dependence of harmonic amplitudes 
 with AMRO for general LL shapes



For γ
0
 >>  1 amplitude of oscillations is exponentially suppressed.

One can find the following values of extremal values of quantum oscillations of interlayer 
conductivity:

if   κπ2  >> γ
0

2 >> 1

(high-tilted angle) :

if   κπ  << γ
0 

 :

Results B: formula for large
(weak magnetic field or/and high tilt angle & dirty sample)



For γ
0
 << 1 / 2 amplitude of oscillations is strongly angular dependent.

One can find the following values of extremal values of quantum oscillations of interlayer 
conductivity at γ

0
 << κ (k

F
d = 1):                                                                                                  

                                                                                                                                                           
                                                                                                                                                           
                                                                                                                                                           
                                                               

Results C: formula for small  

(strong magnetic field or/and clean sample)   



Results C: formula for small  
(strong magnetic field or/and clean sample)   

Ratio of oscillating to monotonic part of interlayer 
conductivity for various magnetic field  

At the Yamaji angles the 
ratio of the oscillating to 
monotonic part of 
interlayer conductivity 
has dips, which become 
stronger for smaller 

magnetic field (larger 0).



Oscillating and monotonic part of MR at 
first Yamaji angle



Relative amplitude of oscillations of MR at 
first Yamaji angle



Conclusions
1. The interplay of angular and quantum oscillations of MR in 
quasi-2D metals is investigated. The amplitude MQO of zz is 
weakly affected by the angular MR oscillations.

23

2. The false spin zeros (minima of the amplitude of MQO at 
some tilt angles of B) may appear in the approximation of 
isolated LL [T. Ando (1974)], but when many LLs are included 
the false spin zeros are absent.        

3. The amplitude of MQO as a function of the tilt angle  of 
magnetic field is calculated taking into account the interplay 
between magnetic and angular MR oscillations. Maxima and 
minima of conductivity oscillations are found analytically. 

4. The behavior of monotonic and oscillating part of MR in 
the vicinity of Yamaji angles is analyzed. 
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