

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Ab- initio исследование индуцированных давлением структурных фазовых переходов в двойных фторидах редких земель GdLiF₄, LuLiF₄

> Петрова Анастасия научный руководитель д. ф.-м. н., профессор Дмитрий Альбертович Таюрский

Лаборатория компьютерного дизайна новых материалов Институт физики Сочи-2015

Содержание

•Актуальность задачи

 $GdLiF_4$ и LuLiF₄, экспериментальные данные

•Методология и параметры вычислений

•Результаты и выводы

Актуальность

•Применение двойных фторидов редкоземельных элементов *M*LiF₄ (*M*- элемент, принадлежащий группе лантаноидов) :

-лазерные активные среды;

-материал подложки для оптически активных редкоземельных ионов; -сцинтилляторы;

-световые усилители;

-оптические преобразователи;

•Требования, предъявляемые к кристаллам, которые используются как активные лазерные среды:

-наличие ионов-активаторов, обладающих необходимой для генерации света системой энергетический уровней;

-прозрачность кристаллической матрицы в области длин волн накачки и излучения лазера;

-высокая механическая прочность кристалла;

GdLiF₄: результаты эксперимента

Фотографии Gd50, сделанные с помощью СЭМ, в двух различных областях образца: $GdLiF_4$ (темно-серые области), GdF_3 (серые области) и эвтектическая композиция (светло-серые области).

Распад GdLiF₄ (I4₁/a): Gd_{1-v}Li_vF3-2y (Р6₃/mmc) и LiF при 13.1 ГПа

*I.M. Ranierii, A.H.A. Bressiani ,S.P. Morato , S.L. Baldochi Journal of Alloys and Compounds 379 (2004) 95–98

LuLiF4: результаты эксперимента I4₁/a LuLiF₁ C12/c1 Gd Lu C-axis A-axis B-axi $a_m \approx \sqrt{2}a_t, b_m \approx c_t, c_m \approx a_t, \beta \approx 135^\circ$ *т*-моноклинная, *t*-тетрагональная симметрии ферроэластичный фазовый переход $I4_1/a$ C12/c1 10.7 ГПа *A. Grzechnik, K. Friese, V. Dmitriev, H.-P. Weber, J-Y. Gesland and W. A. Crichton J. of physics: Cond. Matt. 17 (2005)

LiGdF₄: Изменение параметра решётки *а*

LiGdF₄: Изменение параметра решётки *с*

LiGdF₄: Изменение объема ячейки V

LiGdF₄:Сравнение механических свойств, полученных с помощью аппроксимации Б-М и МТ модуля с экспериментальными результатами при 0

$$P(V) = \frac{3B_0}{2} \left[\left(\frac{V_0}{V}\right)^{\frac{7}{3}} - \left(\frac{V_0}{V}\right)^{\frac{5}{3}} \right] \left\{ 1 + \frac{3}{4} \left(B'_0 - 4\right) \left[\left(\frac{V_0}{V}\right)^{\frac{2}{3}} - 1 \right] \right\}$$

Метод	V,объём Å ³ (MT)	V ₀ ,объём, Å ³ (Б-М)	(V ₀ - V ₀ эксп)/V ₀ эксп,%	В ₀ , модуль сжатия, ГПа (Б-М)	В, модуль сжатия, ГПа(МТ)	(В ₀ - В ₀ эксп)/В ₀ эксп, %
NM core	302.42	302.38	-0.17	78.99	79.97	1.23

Экспериментальные данные: $B_0 = 76 \pm 4$ ГПа и объём единичной ячейки при нулевом давлении $V_0 = 302.9 \pm 0.3$ Å³

*Grzechnik A, Crichton WA, Bouvier P, Dmitriev V, Weber HP, Gesland JY. J PhysCondens Matter 16 (2004), 7779

LiGdF₄: Изменение констант упругости

Параметры вычислений

(LiLuF ₄) ₂ I4 ₁ /a	(LiLuF ₄) ₂ C12/c1	
magnetism: NM (non magnetic)	NM	
k-mesh:9*9*9	7*7*9	
MP (Methfelston-Paxton) 0.12 eV	MP 0.17 eV	
Accuracy: Accurate	Accurate	
Cut-off:796 eV	576 eV	
SCF: 10 ⁻⁶ eV	10 ⁻⁶ eV	
F max: 0.005 eV/Ang	0.005 eV/Ang	
Core electrons: Lu ³⁺	Lu ³⁺	
L(S)DA: U=1 eV	U=1 eV	

Автоматическая сходимость

Структурные параметры двух симметрий LuLiF₄ C12/c1 и I4₁/а в зависимости от давления

*A. Grzechnik, K. Friese, V. Dmitriev, H.-P. Weber, J-Y. Gesland and W. A. Crichton J. of physics: Cond. Matt. 17 763 (2005)

LuLiF₄:Сравнение механических параметров

Метод (симметрия)	V ₀ ,объём, Å ³	В ₀ ,модуль	В ₀ ', первая производная
		сжатия, ГПа	модуля сжатия по
			давлению
Б-М (I4 ₁ /а)	283.4	83	4.5
МТ	283.3	85	-
Б-М эксперимент*	280.7±0.2	85±3	5.59±0.55

константы	Данные из статьи **	МТ-вычисления	
эластичности, ГПа			
C ₁₁	131 (1.9)	128	
C ₁₂	54 (1.9)	54	
C ₁₃	62 (1.3)	59	
C ₁₆	13 (1.6)	9	
C ₃₃	168 (1.9)	165	
C ₄₄	40 (2.7)	40	
C ₆₆	29 (2.7)	24	

* A. Grzechnik, K. Friese, V. Dmitriev, H.P. Weber, J.Y. Gesland, W.A. Crichton, J. Phys.: Condens. Matter 17, 763 (2005)

**B. Minisini, P. Bonnaud, O. A. Wang and F. Tsobnang, Computational Materials Science 42, 156–160 (2008)

Энтальпия различных фаз LuLiF₄ по отношению к энтальпии фазы шеелита I4₁/а в зависимости от давления

Выводы

Для двух соединений были получены:

•оптимальные параметры для моделирования двойных фторидов (*M*LiF₄);

•значения <u>структурных параметров</u> решётки (a, c, c/a, V) в <u>широком</u> диапазоне давлений;

•константы упругости и исследовано их поведение в зависимости от давления;

•уравнения состояния твёрдого тела в аппроксимации Birch-Murnaghan;

Имеющиеся экспериментальные данные <u>согласуются</u> с полученными значениями.

≻В соединении GdLiF₄ найдены два конкурирующих перехода в фазы с симметриями C12/c1 и P12/c1;

≻В LuLiF₄ фазовый переход был найден при 10.5 ГПа (экспериментальное значение 10.7 ГПа);

≻Было показано, что данный переход является переходом второго рода;

≻На основании расчета энтальпии доказано отсутствие фазовых переходов в структуры с симметриями P2₁/с и P12/c1
24

Спасибо за внимание!