Идеи и методы физики конденсированного состояния

XIV Школа-конференция молодых ученых "Проблемы физики твердого тела и высоких давлений" Сочи, 11-20 сентября 2015г.

МОЖЕТ ЛИ МАГНИТНОЕ ПОЛЕ КОНТРОЛИРОВАТЬ КИРАЛЬНОСТЬ КРИСТАЛЛА? ОПТИЧЕСКАЯ СПЕКТРОСКОПИЯ ВЫСОКОГО РАЗРЕШЕНИЯ МУЛЬТИФЕРРОИКА СuB₂O₄

М. Н. Попова

Институт спектроскопии РАН, Троицк, Москва

G

Magnetic Control of Crystal Chirality and the Existence of a Large Magneto-Optical Dichroism Effect in CuB₂O₄

M. Saito, K. Ishikawa, K. Taniguchi, and T. Arima

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan (Received 23 April 2008; published 12 September 2008)

The possibility of a magnetic field controlling the chirality of matter has been debated for a long time. Here, we report the successful induction of chirality in the noncentrosymmetric canted antiferromagnet, CuB_2O_4 , by application of a low intensity static magnetic field. The chirality is reversed by a 90° rotation of the direction of the magnetic field. The induction of chirality by a magnetic field gives rise to a gigantic enhancement of magnetochiral dichroism in this material. The ability to switch handedness in combination with this large magnetochiral optical effect allows us to design new optical devices such as a magnetically controllable isolator.

План

- Некоторые сведения из магнитооптики
- Спор по поводу заявления Saito et al. об осуществлении контроля киральности кристалла с помощью магнитного поля
- Кристаллы СиВ₂О₄: структура, магнитные, оптические свойства
- Спектроскопия высокого разрешения кристаллов CuB₂O₄
 температурное поведение частот и ширин линий
 обнаружение линейного дихроизма в изотропной *ab* плоскости
- Альтернативное объяснение результатов Saito et al
- ЛМД как чувствительный метод исследования магнитных фазовых переходов и магнитных структур в сложных магнетиках
- Выводы

Магнитооптика

M. Faraday (1845) - k || H -

$$\varphi_{\varpi} = \frac{\pi v l}{c} \Delta n \cdot \cos \theta_{\Gamma}$$

Вращение плоскости поляризации света Магнитный круговой дихроизм Продольный эффект Зеемана

A. Cotton, H. Mouton (1907) - k \perp H W. Voigt – в кристаллах

Двойное лучепреломление Магнитный линейный дихроизм Поперечный эффект Зеемана

$$\Delta \check{n}(\omega) = \Delta n(\omega) + i\Delta k(\omega)$$

Распространение электромагнитных волн

Уравнения Максвелла

$$\nabla \mathbf{D} = 4\pi\rho \qquad \nabla \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} + \frac{4\pi}{c} \mathbf{j}$$

$$\nabla = \frac{\partial}{\partial x} \mathbf{e}_x + \frac{\partial}{\partial y} \mathbf{e}_y + \frac{\partial}{\partial z} \mathbf{e}_z$$

Материальные уравнения

Без учета пространственной дисперсии и магнитоэлектрического взаимодействия

$$D_i = \varepsilon_{ik} E_k, \quad B_i = \mu_{ik} H_k$$

Учет пространств. дисперсии:

$$D_i = \varepsilon_{ik} E_k + \gamma_{ikl} \frac{\partial E_k}{\partial x_l}$$

Принципы магнитной симметрии и оптические явления в кристаллах

Отсутствуют внешнее магнитное поле и спонтанное упорядочение:

$$\varepsilon_{ik}^s = \varepsilon_{ki}^s, \quad \gamma_{ikl}^a = - \gamma_{kil}^a$$

Внешнее магнитное поле:

$$\varepsilon_{ih}^{a}(H) = -\varepsilon_{hi}^{a}(H), \quad \gamma_{ihl}^{s}(H) = \gamma_{hil}^{s}(H)$$

Смоленский, Писарев, Синий. Двойное лучепреломление света в магнитоупорядоченных кристаллах. УФН **116** (1975) 231

Принципы магнитной симметрии и оптические явления в кристаллах

Свойства тензоров ε_{ik} и γ_{ikl} при преобразовании координат (инверсия I) и обращении времени (R) и соответствующие оптические эффекты в кристаллах (знаки «+» и «-» говорят о сохранении или изменении знака при преобразовании; Re и Im-вещественная и мнимая части тензоров)

Тензор	Часть тензора	I	R	Оптический эффект
Re ε_{ik} Im ε_{ik} Im ε_{ik} Re ε_{ik} Re γ_{ikl} Im γ_{ikl} Re γ_{ikl} Im γ_{ikl}	Симметричная » Антисимметрич- ная То же » » « » Симметричная »		++	Линейное двупреломление Линейный дихроизм Невзаимное круговое двупреломление (эффект Фарадея) Невзаимный круговой дихроизм Обратимое круговое двупреломление (оптическая актерность) Обратимый круговой дихроизм Невзаимный линейный дихроизм Невзаимное двупреломление

Оптические эффекты в магнитоупорядоченных кристаллах, при наложении электрического поля (E), упругих напряжений (σ) $\epsilon_{ik}^{a} = \alpha_{ikl}m_{l} + \beta_{ikl}l_{l} + \xi_{ikl}E_{l} + \delta_{ikln}\sigma_{ln}$ $\epsilon_{ik}^{s} = \epsilon_{ik}^{(0)} + a_{ikln}m_{l}m_{n} + b_{ikln}l_{l}l_{n} + c_{ikln}m_{l}l_{n}$

Преобразования тензоров, определяющих эффект Фарадея (ЭФ) и эффект Коттона — Мутона (ЭКМ) в магнитоупорядоченных кристаллах

Явление	Тен- зор	Ранг	Свойства преобразования	прлмеры
Магнитный ЭФ Антиферромаг- нитный ЭФ ЭФ в электри- ческом поле ЭФ при упругих деформациях Магнитный ЭКМ Антиферромаг- нитный ЭКМ Билинейный ЭКМ	α _{ikl} βikl Šikln δ _{ikln} b _{ikln} c _{ikln}	3 3 4 4 4 4 4	Аксиальный <i>i</i> -тензор То же Полярный <i>i</i> -тензор Полярный <i>c</i> -тензор То же Полярный <i>i</i> -тензор <i>i</i> -тензор	Диа- и парамагнетики в магнитном поле; ферро- и ферримагнетики Ферримагнетики; кристаллы со сла- бым ферромагнетизмом Магнитоэлектрики Пьезомагнетики Пьезомагнетики Диа- и парамагнетики в магнитном поле; ферро- и ферримагнетики Антиферромагнетики; ферримагне- тики Кристаллы со слабым ферромагне- тизмом

ŝ

Magnetic Control of Crystal Chirality and the Existence of a Large Magneto-Optical Dichroism Effect in CuB₂O₄

M. Saito, K. Ishikawa, K. Taniguchi, and T. Arima

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan (Received 23 April 2008; published 12 September 2008)

FAST TRACK COMMUNICATION

Calculated chiral and magneto-electric dichroic signals for copper metaborate (CuB₂O₄) in an applied magnetic field

Stephen W Lovesey^{1,2} and Urs Staub³

¹ ISIS Facility, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX, UK ² Diamond Light Source, Lumited, Oxfordshire OX11 0DE, UK ³ Swiss Light Source, Paul Scherer Institut, CH-5232 Villigen, Switzerland

Received 13 December 2008, in final form 16 February 2009 Published 5 March 2009 Online at stacks.iop.org/JPhysCM/21/142201

Abstract

Expressions for dichroic signals in terms of electron multipoles have been used to analyse optical data gathered on a crystal of copper metaborate in the presence of a magnetic field. Calculated signals comply with the established crystal and magnetic structures of CuB₂O₄, and respect the global symmetries of parity-even and parity-odd dichroic signals in full. We have success in describing five different experiments in total. The claim by Saito *et al* (2008 *Phys. Rev. Lett.* **101** 117402) that they observe magnetic control of crystal chirality in one of their five experiments is challenged.

IOP PUBLISHING

J. Phys.: Condens. Matter 21 (2009) 498002 (2pp)

REPLY

Reply to comment on 'Calculated chiral and magneto-electric dichroic signals for copper metaborate (CuB₂O₄) in an applied magnetic field'

1 ISIS Facility, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX, UK

² Diamond Light Source Ltd, Oxfordshire OX11 0DE, UK

³ Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland

Received, in final form 2 November 2009 Published 19 November 2009 Online at stacks.iop.org/JPhysCM/21/498002

Abstract

From the dawn of modern electromagnetism it has been known that a magnetic field is not handed (chiral). Arima and Saito (2009 *J. Phys.: Condens. Matter* **21** 498001) persist with unwisdom in their speated claim to have observed control of chirality using a magnetic field by and in itself. In our reply to their claim, we demonstrate damning errors in all challenges in the comment levelled at our analysis of the observation reported by Saito *et al* (2008 *Phys. Rev. Lett.* **101** 117402) and made on a crystal of copper metaborate.

IOP PUBLISHING	JOURNAL OF PHYSIC
J. Phys.: Condens. Matter 21 (2009) 498001 (3pp)	doi:10.1088/09

COMMENT

Comment on 'Calculated chiral and magneto-electric dichroic signals for copper metaborate (CuB₂O₄) in an applied magnetic field'

T Arima and M Saito

JOURNAL OF PHYSICS: CONDENSED MATTE doi:10.1088/0953-8984/21/49/4980

Figure 2. Effect of mirror reflection and space inversion on a copper metaborate crystal in the presence of a magnetic field along the *a* axis. The crystal in the field belongs to the point group 222, allowing both natural circular dichroism (NCD) and linear dichroism (LD), as shown in the first row. Its (110) mirror image and inversion image are shown in the second and third rows, respectively. Plus and minus in the columns for NCD and LD indicate that the sign of dichroic signal is unchanged and reversed, respectively.

symmetry operation². The space inversion after the fourfold rotation. Therefore, in a $\frac{4}{2}m$ system, where the fourfold rotation. Therefore, in a $\frac{4}{2}m$ system, where the fourfold rotation rotation as symmetry operation, the space inversion is equivalent to the fourfold rotation about the *c* axis. On the other hand, the space

H//b

H//a

14.30-17.30 Session 7 Spin-related phenomena in multiferroic oxides 14.30-15.00 Sandor Bordács (invited) Dynamic magnetoelectric effects in multiferroic oxides

Ba₂CoGe₂O₇, Sr₂CoSi₂O₇, Ca₂CoSi₂O₇: "noncentrosymmetric melilite structure allowed us to observe magnetic field induced chirality"

16.30-16.45 Kirill Boldyrev New phase transitions, magnetic structures and excitations in multiferroic CuB2O4 revealed by optical spectroscopy

План

- Некоторые сведения из магнитооптики
- Спор по поводу заявления Saito et al. об осуществлении контроля киральности кристалла с помощью магнитного поля
- Кристаллы CuB₂O₄: структура, магнитные, оптические свойства
- Спектроскопия высокого разрешения кристаллов CuB₂O₄
 температурное поведение частот и ширин линий
 обнаружение линейного дихроизма в изотропной *ab* плоскости
- Альтернативное объяснение результатов Saito et al
- ЛМД как чувствительный метод исследования магнитных фазовых переходов и магнитных структур в сложных магнетиках
- Выводы

Метаборат меди CuB_2O_4

- **1906 Д.И. Менделеев. Основы химии** стр. 635: *СиВ₂О₄*
- **1960** M. Martinez- Ripoli *et al.* The Crystal Structure of Copper Metaborate, CuB_2O_4 , Acta Cryst. B **27**, 677 (1960).
- 1999-2006 Г.А. Петраковский и др.

Several papers on *Magnetic properties of CuB_2O_4*.

2008 J. Schlüter et al.,

Santarosaite, CuB₂O₄, a new mineral with disordered structure from the Santa Rosa mine, Atacama desert, Chile, Neues Jahrbuch für Mineralogie **185**, 27 (2008).

2011 Р.В. Писарев и др.

 Electronic transitions and genuine crystal-field parameters in copper metaborate CuB₂O₄, Phys. Rev. B. 84, 075160 (2011).
 Lattice dynamics of piezoelectric copper metaborate CuB₂O₄ Phys. Rev. B 88, 024301 (2013).

Кристаллическая структура CuB₂O₄

Нецентросимметричная тетрагональная структура

Магнитная структура CuB_2O_4

PHYSICAL REVIEW B 68, 024405 (2003)

Complex magnetic ground state of CuB₂O₄

M. Boehm*

Laboratory for Neutron Scattering, ETH Zurich & Paul Scherrer Institute, CH-5232 Villigen, Switzerland and Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9, France

B. Roessli and J. Schefer Laboratory for Neutron Scattering, ETH Zurich & Paul Scherrer Institute, CH-5232 Villigen, Switzerland

A. S. Wills Department of Chemistry, University College London, WC1H 0AJ London, United Kingdom

B. Ouladdiaf and E. Lelièvre-Berna Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9, France

U. Staub Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland

> G. A. Petrakovskii Institute of Physics, SB RAS, 660036 Krasnoyarsk, Russia (Received 24 January 2003; published 3 July 2003)

Электронные d-d переходы в CuB_2O_4

CuGeO₃ - бесструктурные спектры

Попова и др., ЖЭТФ 1996

1968 PECTROSCOPY SECURIC

Pisarev et al., Phys. Rev. Lett. 2004; Phys. Rev. B 2011

R. V. Pisarev, K. N. Boldyrev, M. N. Popova, A. N. Smirnov, V. Yu. Davydov, L. N. Bezmaternykh, M. B. Smirnov, V. Yu. Kazimirov. Lattice dynamics of piezoelectric copper metaborate CuB₂O₄. Phys. Rev B 88, 024301 (2013)

Невзаимный линейный дихроизм в CuB₂O₄

Saito et al., J. Phys. Soc. Jap.. 2008

Lowsey & Staub, J. Phys. Cond. Mat. 2009

Saito et al., Nature Mat., 2009

Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field

M. Saito, K. Ishikawa, S. Konno, K. Taniguchi and T. Arima*

Значительное МЭ взаимодействие в (CuNi)B₂O₄

ဇ္မ

Magnetic Control of Crystal Chirality and the Existence of a Large Magneto-Optical Dichroism Effect in CuB₂O₄

M. Saito, K. Ishikawa, K. Taniguchi, and T. Arima

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan (Received 23 April 2008; published 12 September 2008)

План

- Некоторые сведения из магнитооптики
- Спор по поводу заявления Saito et al. об осуществлении контроля киральности кристалла с помощью магнитного поля
- Кристаллы СиВ₂О₄: структура, магнитные, оптические свойства
- Спектроскопия высокого разрешения кристаллов CuB₂O₄
 температурное поведение частот и ширин линий
 обнаружение линейного дихроизма в изотропной *ab* плоскости
- Альтернативное объяснение результатов Saito et al
- ЛМД как чувствительный метод исследования магнитных фазовых переходов и магнитных структур в сложных магнетиках
- Выводы

ИСАН: Спектроскопия высокого разрешения в магнитном поле

Фурье-спектрометр Bruker IFS 125HR:

- спектральное разрешение до 0.5 см⁻¹
- спектральная область 12000 20000 см⁻¹

Криорефрижератор CryoMech ST403:

- область температур 3.5 300К
- стабильность температуры 0.01К
- шаг по температуре до 0.05К Поляризационные измерения:

- призма Глана-Тейлора

Магнитные измерения:

-постоянные магниты NdFeB (до 0.7T)

Раздельное магнитное упорядочение Cu(4b) и

Линейный АФ дихроизм в *ab* плоскости

Линейный дихроизм только в линиях 46 !!!

Почему наблюдается ЛД в изотропной (ab) плоскости?

Магнитное давыдовское расщепление

Давыдовское расщепление:

А.С. Давыдов. Теория молекулярных экситонов

Магнитное давыдовское расщепление

Loudon, R. Theory of infrared and optical spectra of antiferromagnets. *Advances in Physics* **17**, 243-280 (1968).

В.В. Еременко. Введение в оптическую спектроскопию магнетиков

План

- Некоторые сведения из магнитооптики
- Спор по поводу заявления Saito et al. об осуществлении контроля киральности кристалла с помощью магнитного поля
- Кристаллы СиВ₂О₄: структура, магнитные, оптические свойства
- Спектроскопия высокого разрешения кристаллов CuB₂O₄
 температурное поведение частот и ширин линий
 обнаружение линейного дихроизма в изотропной *ab* плоскости
- Альтернативное объяснение результатов Saito et al
- ЛМД как чувствительный метод исследования магнитных фазовых переходов и магнитных структур в сложных магнетиках
- Выводы

~ 25 раз

Эксперименты с циркулярно поляризованным светом Параметры Стокса

 $S_0 = E_{0x}^2 + E_{0y}^2$ Интенсивность $S_1 = E_{0x}^2 - E_{0y}^2$ Вертикальная и горизонтальная поляризация $S_2 = 2E_{0x}E_{0y}\cos\delta$ Линейная поляризация ± 45° $S_3 = 2E_{0x}E_{0y}\sin\delta$ Циркулярность

$$S_1^2 + S_2^2 + S_3^2 = S_0^2$$

~1/25

 $|S_1| = 0.04, |S_2| = 0$ и, следовательно, циркулярность $|S_3| = 0.999$

План

- Некоторые сведения из магнитооптики
- Спор по поводу заявления Saito et al. об осуществлении контроля киральности кристалла с помощью магнитного поля
- Кристаллы СиВ₂О₄: структура, магнитные, оптические свойства
- Спектроскопия высокого разрешения кристаллов CuB₂O₄ температурное поведение частот и ширин линий обнаружение линейного дихроизма в изотропной *ab* плоскости
- Альтернативное объяснение результатов Saito et al
- ЛМД как чувствительный метод исследования магнитных фазовых переходов и магнитных структур в сложных магнетиках
- Выводы

Линейный АФ дихроизм и магнитные фазовые переходы

Расщепление магнитного фазового перехода при 7* Эллиптическая геликоидальная структура

Дополнительные низкотемпературные фазовые переходы

Внешнее магнитное поле: Спектры CuB₂O₄

Внешнее магнитное поле: Линейный дихроизм

О природе фазовых переходов при Т* Bohem et al., Phys. Rev. B 2003 B. Magnetic structure in the incommensurate phase

$\Gamma_A \!=\! \Gamma_1 \!+\! \Gamma_2 \!+\! 2\Gamma_3 \!+\! 2\Gamma_4$

TABLE VIII. Basis vectors of CuB_2O_4 at lattice site A in the incommensurate phase: $\mathbf{k}_{mag} = [0,0,k_z(T)]$. The phase $\varepsilon \varphi_1$ has the value $\varepsilon \varphi_1 = \exp(-i\frac{3}{2}\pi k_z)\exp(i2\pi k_z) = \exp(i\frac{1}{2}\pi k_z)$.

Γ ₁ :	$\psi_1(\Gamma_1)$	$S_{A1z} - \varepsilon \varphi_1 S_{A2z}$,
Γ_2 :	$\psi(\Gamma_2)$	$S_{A1z} + \varepsilon \varphi_1 S_{A2z}$,
Γ ₃ :	$\psi_1(\Gamma_3)$	$S_{A1x} - \varepsilon \varphi_1 S_{A2y}$,
	$\psi_2(\Gamma_3)$	$S_{A1y} - \varepsilon \varphi_1 S_{A2x}$,
Γ ₄ :	$\psi_1(\Gamma_4)$	$S_{A1x} + \varepsilon \varphi_1 S_{A2y}$,
	$\psi_2(\Gamma_4)$	$S_{A1y} + \varepsilon \varphi_1 S_{A2x}$.
		•

 $c_1 \psi_1(\Gamma_i) + c_2 \psi_2(\Gamma_i)$

 $|c_1| = |c_2|$ a simple helix

 $\begin{vmatrix} c_1 \end{vmatrix} \neq \begin{vmatrix} c_2 \end{vmatrix}$ an elliptical helical structure

 $k_{\rm IC} \to 0 \qquad C \to {\rm IC}(\Gamma_3) \quad \text{a continous transit} \, \widehat{\psi}_2$ ${\rm IC}(\Gamma_3) \to {\rm IC}(\Gamma_4) \quad \text{requires a } \pi \text{ phase change in}$

О природе фазовых переходов при Т*

Выводы

- Обнаружен линейный АФ дихроизм в (*ab*) плоскости монокристалла CuB₂O₄ с тетрагональной структурой.
- Показано, что ЛМД связан с давыдовским расщеплением 3d экситонов меди.
- Наша работа дает альтернативное объяснение экспериментальных результатов Saito et al., утверждавших, что можно управлять киральностью кристалла с помощью магнитного поля, и подтерждает правоту Lovesey and Staub.
- Показано, что ЛМД может служить чувствительным инструментом для изучения магнитных фазовых переходов и магнитных структур в CuB₂O₄.
- Обнаружены новые магнитные фазовые переходы в CuB₂O₄. Установлен характер несоразмерных магнитных структур .
- K. N. Boldyrev, R. V. Pisarev, L. N. Bezmaternykh, M. N. Popova.
 Antiferromagnetic Dichroism in a Complex Multisublattice Magnetoelectric CuB₂O₄ Phys. Rev. Lett. **114**, 247210 (2015)

