Электронный спиновый резонанс в твердых растворах замещения $Eu_{1-x}Ca_xB_6$ и $Eu_{1-x}Gd_xB_6$

Самарин А.Н.^{1,2}, Семено А.В.¹, Гильманов М.И.^{1,2}, Анисимов М.А.¹, Глушков В.В.^{1,2}, Демишев С.В.¹, Левченко А.В.³, Филипов И.Б.³, Шицевалова Н.Ю.³

¹Институт общей физики им. А.М.Прохорова, ОНТиКТ, Москва ²Московский физико-технический институт, ФПФЭ, Долгопрудный ³Институт проблем материаловедения им. И.Францевича НАНУ, Киев

План доклада

- Описание экспериментальной установки и методики измерений ЭСР в металлах с сильными электронными корреляциями
- Методика обработки и результаты исследования $Eu_{1-x}Gd_xB_6$
- Методика обработки и результаты исследования $Eu_{1-x}Ca_xB_6$
- Выводы

Схема экспериментальной установки и геометрия эксперимента

Статические свойства образцов $Eu_{1-x}Gd_xB_6$

Удельное сопротивление образцов EuB_6 и $Eu_{1-x}Gd_xB_6$, полученное из результатов измерений транспортных свойств (установка гальваномагнитных измерений ОНТиКТ ИОФ РАН)

Статическая намагниченность образцов EuB_6 и $Eu_{1-x}Gd_xB_6$, полученная из результатов SQUID-измерений (MPMS-5, Quantum Design)

Методика абсолютной калибровки кривых поглощения ЭСР

Общее решение уравнения движения намагниченности Ландау-Лифшица (модель локализованных магнитных моментов):

$$\vec{B} = \hat{\mu} \vec{H}$$

$$\hat{\mu} = \begin{vmatrix} \mu_0 & i\mu_a & 0 \\ -i\mu_a & \mu_0 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\mu_0 + \mu_a = \mu_1^+ - i \mu_2^+$$

$$\mu_0 - \mu_a = \mu_1^- - i \mu_2^-$$

$$\mu_1^+ = 1 + 4 \pi \frac{\gamma M_0((1 + \alpha^2)\omega_0 - \omega)}{(\omega_0 - \omega)^2 + \alpha^2 \omega_0^2}$$

$$\mu_{1}^{-} = 1 + 4 \pi \frac{\gamma M_{0}((1 + \alpha^{2})\omega_{0} + \omega)}{(\omega_{0} + \omega)^{2} + \alpha^{2}\omega_{0}^{2}}$$

$$\mu_2^+ = 4\pi \frac{\gamma M_0 \alpha \omega}{(\omega_0 - \omega)^2 + \alpha^2 \omega_0^2}$$

$$\mu_{2}^{-} = 4\pi \frac{\gamma M_{0} \alpha \omega}{(\omega_{0} + \omega)^{2} + \alpha^{2} \omega_{0}^{2}}$$

$$Q^{-1} = Q_{res}^{-1} + Q_{sample}^{-1}$$

$$Q_{sample}^{-1} \sim \Re \left[i \frac{\mu}{\sigma} \right]^{1/2}$$

$$\mu = 1 + 4 \pi \chi$$

$$\mu = \mu_1 - i \mu_2$$

$$\chi = \chi_1 - i \chi_2$$

Q — добротность нагруженного резонатора Q_{res} — добротность ненагруженного резонатора Q_{res} — потери, вносимые образцом

и — высокочастотная магнитная проницаемость

 σ — комплексная проводимость образца

α — коэффициент диссипации

g — g-фактор

 M_0 — осциллирующая намагниченность

у — гиромагнитное соотношение

 N_z — размагничивающий фактор

М — статическая намагниченность

H — напряженность внешнего магнитного поля

$$y = a \frac{\mu_B}{\mu_B}$$

$$\gamma = g \frac{\mu_B}{\hbar} \qquad \omega_0 = \gamma (H - 4\pi N_z M)$$

A.V. Semeno, et al., Phys. Rev. B, 79, 014423 (2009)J. Young and E. Uehling, Phys. Rev. 94, 544 (1954)

Потери, вызванные образцом, в единицах $R^{1/2}$. Сплошная линия — потери, обусловленные проводимостью образца без учета высокочастотной

магнитной проницаемости

$3CP \ e \ Eu_{1-x}Gd_xB_6 \ (x = 0.007)$

Черные точки соответствуют экспериментальным кривым, красные линии – аппроксимация экспериментальных кривых модельной функцией.

$3CP \ e \ Eu_{1-x}Gd_xB_6 \ (x = 0.039)$

Черные точки соответствуют экспериментальным кривым, красные линии – аппроксимация экспериментальных кривых модельной функцией.

Параметры аппроксимации: α , g, M_{ρ}

Температурные зависимости параметров линии ЭСР в Eu_{1-x}Gd_xB₆

Линейную температурную зависимость W(T) в парамагнитной области $(T > T_c)$ можно объяснить корринговским механизмом рассеяния [1].

[1] S.E.Barnes, Advances in Physics, 30, 801 (1981)

Статические свойства образцов Еи_{1-х}Са_хВ₆

Удельное сопротивление образцов EuB_6 и $Eu_{1-x}Ca_xB_6$, полученное из результатов измерений транспортных свойств (установка гальваномагнитных измерений ОНТиКТ ИОФ РАН)

Статическая намагниченность образцов EuB_6 и $Eu_{1-x}Ca_xB_6$, полученная из результатов SQUID-измерений (MPMS-5, Quantum Design)

Применение стандартной методики к Eu_{1-x}Ca_xB₆

Исходные кривые резонансного поглощения в ${\rm EuB}_6$. Все кривые сдвинуты для наглядности.

Температурные зависимости ширины линии ЭСР W(T) в EuB_6 и $Eu_{1-x}Ca_xB_6$.

g-фактор примерно постоянен: $g \sim 1.95 \pm 0.05$

Учет комплексной проводимости в Eu_{1.}, Ca, B_к

В Еи_{1-х}Са_хВ₆ существеннен вклад мнимой части комплексной проводимости.

Модель Götze, Wölfle

$$M(\omega) = M'(\omega) + i M''(\omega)$$
 Функция памяти

Модель Götze, Wölfle [Phys.Rev.B 6, 1226 (1972)]
$$\sigma(\omega) = \frac{e^2 N}{m} \cdot \frac{i(\omega + M'(\omega)) + M''(\omega)}{(\omega + M'(\omega))^2 + (M''(\omega))^2}$$

Общие свойства:

Минимальное предположение

$$M'(\omega) \approx M'(0) + \frac{\partial M'}{\partial \omega} \cdot \omega + \dots \longrightarrow M'(0) = 0$$

$$M''(\omega) \approx M''(0)$$

$$M'(\omega) = -M'(-\omega)$$

$$M''(\omega) = M''(-\omega)$$

$$\sigma(\omega) = \frac{e^2 N}{m} \cdot \frac{i \omega \left(1 + \frac{\partial M'}{\partial \omega}\right) + M''(0)}{\left[\omega \left(1 + \frac{\partial M'}{\partial \omega}\right)\right]^2 + \left(M''(0)\right)^2}$$

Выбор функции $\sigma(\omega, H)$:

 $\sigma(0, H)$ – DC магнитосопротивление (известно из эксперимента)

 $\sigma(0, 0)$ – DC проводимость в нулевом поле

Предположение:
$$\sigma(\omega=0) = \sigma(0,H) = \frac{e^2 N}{m M''(0)}$$
 $M''(0) = \frac{e^2 N}{m \sigma(0,H)}$

$$M''(0) = \frac{e^2 N}{m\sigma(0,H)}$$

Учет комплексной проводимости в Еи, Са,В,

$$\sigma(\omega, H) = \sigma(0, H) \cdot \frac{i \omega \left(1 + \frac{\partial M'}{\partial \omega}\right) \cdot \frac{m \sigma(0, H)}{e^2 N} + 1}{\left[\omega \left(1 + \frac{\partial M'}{\partial \omega}\right) \cdot \frac{m \sigma(0, H)}{e^2 N}\right]^2 + 1}$$

Выделяем полевой вклад:
$$\frac{1 + \frac{\partial M'}{\partial \omega}}{e^2 N} \cdot m \, \sigma(0, H) \equiv \frac{1 + \frac{\partial M'}{\partial \omega}}{e^2 N} \cdot m \, \sigma(0, 0) \cdot \frac{\sigma(0, H)}{\sigma(0, 0)} = \tau(T, \omega) \cdot \frac{\sigma_T(0, H)}{\sigma_T(0, 0)}$$

$$\tau(T, \omega) = \frac{\sigma(0, 0)}{e^2 N/m} \left(1 + \frac{\partial M'}{\partial \omega}\right)$$

 $\tau(T,\omega) = \frac{\sigma(0,0)}{e^2 N/m} (1 + \frac{\partial M'}{\partial \omega})$ — В общем случае — функция температуры и частоты. В минимальном приближении не имеет частотной зависимости.

Итоговое выражение для проводимости:

$$\sigma(\omega, H, T) = \sigma_{DC}(H) \cdot \frac{i \omega \tau(T) \frac{\sigma_{DC}(H)}{\sigma_{DC}(0)} + 1}{\left[\omega \tau(T) \frac{\sigma_{DC}(H)}{\sigma_{DC}(0)}\right]^{2} + 1}$$

Выражение для аппрокимации экспериментальных кривых:

$$Q_{sample}^{-1} \sim \Re\left[i\omega \frac{\left(\mu + \mu_{a}\right)}{\sigma}\right]^{1/2} + \Re\left[i\omega \frac{\left(\mu - \mu_{a}\right)}{\sigma}\right]^{1/2}$$

$$\mu \pm \mu_{a} = \mu_{1}^{\pm} - i\mu_{2}^{\pm}$$

Алгоритм обработки экспериментальных данных в Eu_{1-x}Ca_xB₆

Аппроксимация производится в два этапа.

На первом этапе задействована вся экспериментальная кривая, при аппроксимации подбирается осциллирующая намагниченность $\mathbf{M}_{_{0}}$, gфактор и оценивается ширина линии.

На втором этапе M_0 и g-фактор фиксируются и в узкой области резонанса подбирается ширина линии (или время спиновой релаксации) и время транспортной релаксации.

Серые точки соответствуют экспериментальным кривым, красные линии – аппроксимация экспериментальных кривых модельной функцией.

Параметры аппроксимации: α , g, M_o , τ

Времена релаксации $Eu_{1-x}Ca_xB_6$

Все образцы исследованы на частоте 60 ГГц.

Выводы

- Было произведено исследование электронного спинового резонанса в системах $\operatorname{Eu}_{1-x}\operatorname{Ca}_x\operatorname{B}_6(x<0.25)$ и $\operatorname{Eu}_{1-x}\operatorname{Gd}_x\operatorname{B}_6(x<0.05)$ в полях до 7 Т при температурах от 1.8 К до 50 К. Обнаружена немонотонная во всем диапазоне концентраций температурная зависимость ширины линии ЭСР W(T).
- В парамагнитной фазе $(T > T_C)$ видна линейная температурная зависимость W(T). В магнитоупорядоченной фазе $(T < T_C)$ наблюдается дополнительный механизм микроволновых потерь, приводящий к увеличению ширины линии ЭСР с понижением температуры.
- Увеличение концентрации примеси (до $x \sim 0.1$ для Ca и $x \sim 0.01$ для Gd) приводит к подавлению этого механизма. Дальнейшее увеличение концентрации еще сильнее увеличивает ширину линии во всем температурном диапазоне. Выяснение природы наблюдаемого эффекта требует проведения дополнительных исследований соединений на основе EuB₆.
- Разработана методика определения транспортного времени релаксации из ЭСР- эксперимента. Произведены оцененки времен спиновой и транспортной релаксации в системе $Eu_{1-x}Ca_xB_6$.

