РОЛЬ ФЕРРОМАГНИТНЫХ КОРРЕЛЯЦИЙ В ГЕНЕЗИСЕ ЭЛЕКТРОННОГО СПИНОВОГО РЕЗОНАНСА В СИСТЕМЕ Ce_{1-x}La_xB₆.

А.В. Семено, А.В. Богач, В.Н. Краснорусский, М.И. Гильманов, А.Н. Самарин, С.В. Демишев. Институт Общей физики РАН, Москва, Россия

В.Б. Филипов, Н.Ю. Шицевалова Институт проблем материалов НАН, Киев, Украина

ЭСР в конденсированных Кондо-ситемах.

Kondo temperature T_{K} =25 K The line width should be $\Delta B \sim k_{B}TK/\mu_{B} \sim 37 T$

Krellner et.al., PRL 100, 2008: ESR signal AFM FM KL Yes [2008] No [2008] Yes [2003] Yes [3] [2005] Yes [4] No No No No No $CeCu_{6-x}Au_x$ (x = 0, 0.1) No YES Demishev et. al. 2004 Θ~100 mK $T_{rel} \propto \chi_0$ $\chi_0 = C/(T+\Theta)$ T.e. m~10⁵m_e Или **⊙<0** Schlottmann, PRB, 2012

Теория ЭСР в СеВ₆.

PHYSICAL REVIEW B 86,075135 (2012)

Electron spin resonance in antiferro-quadrupolar-ordered CeB₆

P. Schlottmann Department of Physics, Florida State University, Tallahassee, Florida 32306, USA (Received 17 May 2012; revised manuscript received 19 July 2012; published 21 August 2012)

4 --> 3 and 2 --> 1 (a) μ_BH / hv 4 --> 2 and 3 -->1 4->1 40 2.5 g. b0 2.0 1.5 (a) 1.0∟ 0.0 0.20.4 0.6 0.8 1.0 ω/π

-ЭСР на носителях, не на ЛММ -ЭСР существует при всех температурах. При низких температурах линия сужается и становится наблюдаемой.

 Основное состояние Г₈ иона Се³⁺
предполагает возможность наблюдения 4-х анизотропных резонансных мод.

• Антиферроквадрупольное упорядочение T<T_Q с двумя подрешетками приводит к редуцированию числа резонансных мод до двух, по одной для каждой подрешетки.

 Обобщение результата, полученного для одного иона на всю решетку с подвижными 4f электронами приводит к редуцированию числа мод до одной с усредненным g-фактором.
Ферромагнитные спиновые корреляции обусловлены квадрупольными корреляциями, что позволяет наблюдать резонансную моду

экспериментально.

Ферромагнетизм в СеВ₆.

Первая гипотеза (2009)

PHYSICAL REVIEW B 80, 245106 (2009)

Magnetic spin resonance in CeB₆

S. V. Demishev,¹ A. V. Semeno,¹ A. V. Bogach,¹ N. A. Samarin,¹ T. V. Ishchenko,¹ V. B. Filipov,² N. Yu. Shitsevalova,² and N. E. Sluchanko¹

Подтверждение (2014)

DEMISHEV et al.

Микроволновые потери **TE**₀₁₁ thin foil hole

Микроволновые потери металлического образца:

$$1/Q_{\text{sample}} \sim \text{Re}\{(1-i)(\mu/\sigma)^{1/2}\}$$

$$\mu = \mu_1 + i\mu_2, \sigma = \sigma_1 + i\sigma_2$$

 σ влияет на форму резонансной линии

Пример:

Модель Друде: $\sigma = \sigma_0/(1+i\omega\tau)$

$$1/Q_{\text{sample}} \sim \text{Re}\{(1-i)[\mu(1+i\omega\tau)/\sigma_0]^{1/2}\},\$$

$$\begin{array}{ll} \Pi pu \ \chi_{l}, \chi_{2}, << l: & 1/Q_{\text{sample}} \sim 1 + A\chi_{1} + B\chi_{2} \ \text{(A>B,} \\ A = B = 2\pi \text{ при } \omega \tau << 1 \ \text{)} \end{array}$$

Свойства поверхности в Ce_{1-x}La_xB₆

Микроволновых измерения чувствительны к поверхности образца (скин-слой).

В CeB₆ свойства поверхности не зависят от обработки (травления) и соответствуют объемным. *Demishev et.al., Phys.Stat.Sol.,2005*

В Ce_{1-x}La_xB₆ свойства поверхности сильно зависят от обработки (травления). Необходимо сопоставление с объемными свойствами.

Экспериментальная линия поглощения в Ce_{1-x}La_xB₆

$$1/Q_{\text{sample}} \sim \text{Re}\{(1-i) \ \mu^{1/2} \} * \rho^{1/2},$$

в системе $Ce_{1-x}La_xB_6\sigma$ -действительная

-Сильное уширение резонанснои линии при легировании лантаном -Сложный спектр резонанса при концентрации лантана 30%

Ниже Т_{І-ІІ} появляются ЭСР-активные центры Ниже Т* величины статической и осциллирующей намагниченностей совпадают.

-Магнитный резонанс – свойство объема образца. Фазовая диаграмма Подтверждается в микроволновых экспериментах.

-Наблюдение магнитного резонанса в квадрупольно-упорядоченной фазе обусловлено формированием ЭПР-активных магнитных моментов.

-Уширение линии ЭСР с увеличением степени легирования Се₁₋ _xLa_xB₆ необусловлено близостью к фазовой границе ПМ-АФК.

-Подтверждается идея о ключевой роли ферромагнитных корреляций для наблюдения ЭСР в Ce_{1-x}La_xB₆.

