[AnpaKoBCKMe (NEePMUOHBI U
NOBEPXHOCTHbIE COCTOAHMUSA
B MOJ1yNMPOBOAHUNKAX U
nonymeTansiax

B.A. Bonkos
NP3 nm. B.A.KoTensHnkosa PAH, Mocksa
CoTpyaHNYecTBO:
N.B. 3aropogHes, B.B. EHangues, HO.V. Jl1aTbiweB

«gen n metoabl PU3NKU KOHAEHCUPOBAHHOIO COCTOAHUSA» , Coun, «BypeBecTHUK», 11-20 ceHTsI6ps 2015



Camagda 3HaMmeHuTada popmysia B oUsmnke:
«e paBHO 3M L, KBaaparT».

To4yHee,
9HEepPrusa penAaTMBUCTCKOIO 3/1EKTPOHA
(dbepmMunoHa) KopHeBbIM 06pa3omM 3aBUCUT
oT umnynbca (A. QUHLLTENH):

E = +m2c* + p2c?

B nokoe: E =+mc?

be3amaccoBada yactmua: E =+xpc



[InpaKoBCKKe (PEPMUNOHBbI. HaCcTOoALLKE U
apheKTUBHbIE (B Mos1ynpoBoaHMNKaX)

Adunpak
(1928 1.)
«MaccuBHble

PEePMUOHbI»
E2 = p? + (mc)?

Bennb (1929 1.)

«be3maccoBble
PEPMUNOHbI»

E=xpcC

“[npakoBcKue”
Kpuctannbol (B,
PbTe u ap.):

E, =2mc* -
aHepreTuMNyecka
A Wenb

TE
[padpeH: 57,
c*=c/300 "
(ncesao-
penaTunesnusM!)

R,



Various types of semimetals

1

(b) (€)

(a) Two conical bands that touch at a nodal point.

The Fermi surface is a point.
(b) Tilted cones (or type-ll Weyl semimetal).

The Fermi surfaces enclose an electron pocket and a hole pocket.
(c) Overlapped bands that do not touch with each other.

Dashed lines denote the location of the chemical potential.



Hermann Weil (1929)
and his Fermions (2015)
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H. Weyl,
“Elektron und Gravitation. |,”
Z. Phys. 56, 330 (1929);
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OCHOBbI TONONOTNU

Tononornsa oTBevyaeT Ha BOMNPOC:
MOXXHO /11 HEMPEPBLIBHO
npeobpa3oBaThb OINH OOBLEKT B

npyron?

OpfHa 13 OCHOBHbIX 3a4a4 TOMoJ10rUN:
HanTKU MaTemMaTmnyeckyto (TOno/1I0rMYECKYH0)
XapakTepPUCTUKY 0O6beKTa (TOMoSI0rMyecknin MHBapmaHT).

Ecnn 06bekTbl A 1 B MMEIT pa3Hbiii TONONOTMUYECKNIA HBAPWAHT,
TO WX HENb3S HENPEPbLIBHO NEpPeBeCcTV ApPYr B Apyra.



Topotronics
by Hasan group

*Topo. Insulators & Berry’s Phase
Topo. Quant. Phase Transition
TOopo. Superconductors

Topo. Crystalline Insulators
Topo. Kondo Insulators
Magnetic Topo. Insulators

Dirac Semimetals

‘Weyl Fermion Semimetals
Majorana Heterostructures
Natural Topo. Superconductors
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 Tononorma n Teepaoe Tesno

e KpaeBble 1 MOBEPXHOCTHLIE
COCTOAHUA

e [ padpeH

e Tonosiornyeckne N3onaTopbl

e [lnpakoBCKKMe nosiymeTasiibl

e BenneBckune nosiymetTasi/ibl

e AKCa/ibHad aHoManuns




[pakoBcKne oepMmnoHbl B rpadpeHe
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Novoselov et al, Science 2004



KpaeBble cocTodHuA Tamma-npaka
B HAHOMepJOpPMUpoOBaHHOM rpageHe
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Nanohole in graphene: predicts of the

theory of the edge Tamm-Dirac states

The edge states rotate around antidot for
both clockwise and

counterclockwise circulations

E

graphene

ml K)T:-l

E R=t 2va(j+®/d, —t /2)

They experience the orbital quantization
k,=2p(j-t/2)/2pR
) =%1/2,£3/2,45/2,...

P/ - the number of magnetic

flux quanta through the antidot.
®=p HR,?



Yu.l. Latyshev et al (2014)
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Experimental realization of graphene nanohole structures
a, Single holes produced by heavy ion irradiation (AFM image),
b, by FIB (SEM image) and
c, by helium ion microscope (SHIM image) on graphene (c) and
thin graphite (a, b, d).



[lon1eBOV TPAH3UCTOP Ha nepdopupoBaHHOM rpageHe

Ay | Graphene FET - structure with the
= back gate

Sio2

e A N ~"300nm SAMPLES

7 Nano-perforated graphene

i 1) Irradiation with heavy

In ions Xe*?6 with energy
of 170 MaB, and fluence
of 310° cm=2.
Estimation of diameter
of antidots (SEM, AFM)
gives D=10 Hwm.

1) lIrradiation with a focused
helium ion beam on ion

helium microscope ORION.
Estimate: D=2 Hw.
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OcumMnNALUKN conpoTUBEHUS
nepoprpoBaHHOro rpadeHa npu N3MeHeHUn ypoBHA PepMu;
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3aBUCUMMOCTb COMPOTUBEHNS OT 3aTBOPHOI0 HamnpPsXKeHUS:
(a) - KOHTPO/bHBbIN 0Opasel, rpadeHa,
(b) - rpatheH, 06/1yYEHHbIN TSHXKENbIMU NOHAMU

E.




Single holes in nano-thin graphite (a, b) and
graphene (c) produced

by FIB (D= 35 nm, SEM image)
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The Aharonov-Bohm resistance magneto-oscillations.

a. Field-periodic resistance oscillations for thin graphite single hole structure
with FIB made nanohole with D= 37 nm

b, graphene structure with a single nanohole made by helium ion
microscope, D=20 nm.

Yu.l. Latyshev, A.P. Orlov, V.A. Volkov, V.V. Enaldiev, |.V. Zagorodney,

O.F. Wvenko, Yu.V. Petrov, P. Monceau.

“Transport of Massless Dirac Fermions in Non-topological Type Edge States”,
Scientific Reports (December 19, 2014);



Pe3ynbTtatbl rpynnbl HO. JlaTbilweBa No rpageHy

13roTtoBieHbl 06pasLbl U ccnengoBaH TpaHCNopPT
(3KCnepuMeHT 1 Teopusl) ANpakoBCKMUX pepMNOHOB B
HaHOMNepgOpPNPOBaHHLIX CTPYKTYpax Ha OCHOBe
rpadpeHa.

O6HapyXeHo opbuTasnibHOe KBaHTOBaHME KPaeBbIX
ANPaKOBCKNX (PEPMMNOHOB, BpallaroLLnXCA BOKPYT
HaHOOTBEPCTUN. Tem cambIM NPAMO O0OKa3aHOo
cylLluecTBoBaHMe coctosaHum Tamma-LUoknn B rpadeHe

C nomollbio n3amepenuin adodpekra AapoHosa-boma B
CONPOTMBIEHNN 06pPa3LLI0B MNPsMbIM COCOO0OM A0Ka3aHa
npoBosLlasa npmpoaa coctodHmin Tamma-LLUoknum B
rpadgoeHe

3 cpaBHeHUA n3BfeyeH napameTp Teopun. OH He
3aBUCUT OT TEXHOMOIUN N XapakKTepusyeT ycpeaHEHHYH
BAO/b TPaekTopun AP MUKPOCKOMUNKY KPaeBoro
noTteHymana.
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Topological Insulators and SSs
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Topological Insulators

Topological insulators are insulating materials that conduct electricity on
their surface via special surface electronic states;

e The surface states of topological insulators are topologically
protected, which means that unlike ordinary surface states they cannot
be destroyed by impurities or imperfections

e Topological insulators are made possible because of two features of
guantum mechanics: symmetry under the reversal of the direction of
time; and the spin—orbit interaction, which occurs in heavy elements
such as mercury and bismuth

e The topological insulator states in 2D and 3D materials were
predicted theoretically in 2005 and 2007, prior to their experimental
discovery



2D and 3D Topolins

(b) The quantum Hall effect.

e
g [yhndee At the edge, electrons execute “skipping
Foa e orbits”, leading to perfect conduction in
S > one direction along the edge.

(c) The edge of 2D topological insulator
contains left-moving and right-moving
@esaes  Modes that have opposite spin and are
related by time-reversal symmetry.
, (d) The surface of a 3D topological
— insulator supports motion in any direction
energy . .
N along the surface, but the direction of the
ymomenum €1€Ctron’s motion uniquely determines its
spin direction and vice versa. The 2D
energy—momentum relation has a
Gwrieeesiaes — “Dirgc cone” structure similar to that in
graphene.
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Bi,_Sb,

Pure Bismuth Alloy : .09<x<.18

semimetal semiconductor E,_ML, ~ 30 meV semimetal

Pure Antimony

Inversion symmetry =

Antimony
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Z class (1:111)

Predict Bi,,Sb, is a strong topological insulator: (1 ; 111).



Topological insulator bismuth calcium selenide

b

binding energy (V)
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(a) Fermi-surface map for the surface of the topological insulator Bi,_,Ca,Se,
measured by spin-resolved ARPES as a function of the surface momentum, k,
and k. The spin direction precesses with electron momentum

around the circular Fermi surface, and opposite momenta have opposite spin.
(b) The surface bands intersect at a “Dirac point” marked by the

cross that is inside the bulk band gap at approximately 0.25 eV. The calcium
concentration, x, is tuned so that the Fermi energy lies between the

bulk valence and conduction bands.
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Quantum Spin Hall Effect in HgTe quantum wells

Theory: Bernevig, Hughes and Zhang, Science ‘06

HgTe

d < 6.3 nm : Normal band order d > 6.3 nm : Inverted band order

Band inversion transition:
Switch parity at k=0

Quantum spin Hall Insulator
with topological edge states

]._‘[éz”(Aﬂ') =+l l—lé‘in(ﬁﬂ)=_l

Pankratov, O.A.; Pakhomov, S.V.; Volkov, B.A. (January 1987). "Supersymmetry in heterojunctions: Band-inverting contact on
the basis of Pbl-xSnxTe and Hgl-xCdxTe".Solid State Communications 61 (2): 93-96

Conventional Insulator




normal inverted
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Molenkamp team, Science-2007



Minimal model of Topological Insulator:
Dirac Eqg. + Boundary Condition

{m?‘: X o0+ CTx X (r;rk)} Vv = FW.

(oqW, — f”(_}ﬂ'??—"l"c)reg = ().
0, T: Pauli matrices acting in
spin and band subspaces,

N = N(S) is normal to surface S

Spectrum of 3D Dirac equation (1) in a halfspace with the BC (2).
The sign of a, determines whether SSs emerge inside or outside the bulk gap.
a, > 0: the SSs lie inside the gap — topological nontrivial phase

a, < 0: the SSs outside the gap — trivial phase.

By means of Dirac Eg. + the BC (2) one may phenomenologically describe the
SS in PbSnTe in direct and inverse band order:
V.A. Volkov, T.N. Pinsker, Sov. Phys. Solid State , 23, 1022 (1981).

B.A. Volkov, O.A. Pankratov, JETP Lett., 42, 178 (1985).
B.A. Volkov , B.G. Idlis , M.Sh. Usmanov, Phys. Usp. 38, 761 (1995).



Dirac semi-metals



Topological Dirac semi-metal: 3D graphen-analoque

Bulk 3D massless Dirac fermions in Na;Bi
Y. Chen et al, Science, 2014

Topological Dirac Semimetal (TDS)

Regular insulator

7

Topological insulator

N

Band inversion

\1/
/5

A topological Dirac semi-metal state is realized at the critical point in the phase
transition from a normal insulator to a topological insulator. The + and — signs
denote the even and odd parity of the energy bands



a 30 Dirac samimaial Top view of lower cone
Ecdgﬁ-ﬂz. Ma,Bi}

b Farmi surface
E=Ep+AE E=Ep E=Ey-AE

(a) Cartoon view of dispersion of 3D Dirac semimetal. (b) Schematic view of
the Fermi surface above the Dirac point (left panel), at the Dirac point (middle
panel) and below the Dirac point (right panel)



Well semimetals



Surface states in Dirac and Weil semimetals vs Toplins

A Fine-tuning (topo . trivial) Dirac semimetal B BiTI(S;:S¢ys),
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/ \ /"\

Dirac at Topological SDC
msulatar critical point insulator
c Topological Dirac semimetal D Na;Bi
3D Dirac multiplet
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DSM =5)WSM

3D topological Dirac semimetals (DSM) in: NasBi and CdsAs:
3D Weyl semimetals (WSM) in: monopnictides TX (T=Ta/Nb, X=As/P)

Both classes of materials feature relativistic fermions with linearly
dispersing excitations.

WSMs can be seen as evolving from DSMs in the presence of the
breaking of time reversal symmetry or space inversion symmetry.

WSMs caused by the loss of space inversion symmetry have been
experimentally realized in non-centrosymmetric crystals of
TaAs, NbAs, NbP and TaP.

For time reversal symmetry breaking-driven WSM in: YbMnBi:

Weyl semi-metal:
« a 3D analog of graphene;
« crystall where the bulk is gapped except
at even number of points in Brillouin zone
in which the bands touch (Weyl nodes)



Weyl semimetals: TaAs, NbAs, TaP and NbP

b)

FIG. 1. Schematics of the topological insulator and Weyl
semimetal. (a) A TT exhibitz an energy gap with a band in-
version. Topological surface states exhibits Dirac-cone-type
dispersion with spin texture. (b} A W5M is gapless in the
bulk and a pair of Weyl points (band crossing points) cxists
with opposite parity. Nonzero Chern number only exists be-
twoen negative and positive Weyl points, which leads to a
spin-resolved surface Fermi arc.



On surface of Well semimetal: Fermi arc

Reqular Solid Weyl Semimetal

Fig. 1: Two possible Fermi surfaces (blue lines) for momentum states on the outer
face of a material. Fermi circle at left represents the usual situation, while the open
Fermi arc at right only appears in the context of a Weyl semimetal. The two can be
distinguished by counting the number of crossings with an arbitrary closed loop
(red). An odd number of crossings can only occur from the Fermi arc

Fig. 2 : A schematic of the Weyl semimetal state, which include the Weyl
nodes and the Fermi arcs. The Weyl nodes are momentum space
monopoles and anti-monopoles
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Weyl Fermion Crystal

ARPES image (top) signals the existence of Weyl fermion nodes and the
Fermi arcs. The plus and minus signs note the particle’s chirality. A
schematic (bottom) shows the way Weyl fermions inside a crystal can be

thought as monopole and antimonopole in momentum space. ( Su-Yang Xu
and M. Zahid Hasan)



Chiral anomaly
= Adler-Bell-Jackiw anomaly
= axial anomaly



Chiral anomaly (Adler-Bell-Jackiw anomaly, 1969)
plays a key role in the standard model of particle physics.
Hermann Weyl, 1929: massless Dirac equation in 3+1 dimensions can be separated into two
two-component equations for Weyl fermions with a definite chirality a.p,

[ 22— 4 Cp.agi

According to the classical equation of motion, the number of fermions with plus or minus chirality is
separately conserved. The statement of chiral anomaly is that Nx, the number of fermion carrying
chirality of sign y is no longer conserved, but obeys the anomaly equation:
N ye2 —= —
— < (E.B)

dt 4rihie

Explanation (1983, Nielsen and Ninomiya)
1D model: partially filled tight binding band. At the chemical potential we have left and right movers shown in
Fig 1 which would appear to be separately conserved if there is no scattering between them. However, in
solid state physics these bands are connected far below the Fermi surface and in the presence of an electric
field E, the momentum state flows according to the simple equation k=FE. Thus charge flows from left to
right as shown in Fig 1, and the number of right movers obey the anomaly equation in 1+1 dimension:
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Fig 1. The left and nght movers in a one

dimensional band are connected lar below

the Fernu level, allowing charge tlow

between them. Adapted from Rel 1 Fig 2 The spectrum vs the 7 component of
the momentum lor a 31 Weyl [ermion mn a
magnetic field (From ref 1)

Trivial metal

hed ks
I [:T'.'. g :I-’J = 2
?‘:"‘._-.Iflr zm

ho J2B(n+y) + k2 Weyl metal

Epl: =

In usual metals, the quantum correction term y takes the value %2, but in Weyl systems it

attains Berry’s phase, such that y=0.
This is a topological property that depends only on the existence of Weyl nodes and

not on the details of the band structure.

Landau levels for Dirac band have a zero energy mode. This mode extends in the pz direction for the 3D Weyl fermion. This band
connects the two Weyl nodes serves as the conduit for charge pumping between the two nodes in the presence of an electric field
parallel to B. The flow of charge is given by the analog of Eq(3), except that we need to include the degeneracy of the zero mode
which is eB/@ per area normal to B. The right hand side of Eq (3) is then proportional to EzB = E.E and yields exactly Eq(2).
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FIG. 5: Panel A: Sketch of the Landau levels (LL) in a
Weyl semimetal showing chiral states in the lowest LL with
opposite velocities and chiralities (arrows) | B. An E-field ||
B breaks chiral symmetry and leads to an axial current. Panel
B shows the triangle anomaly that ruins the conservation of
chiral charge. Panel C: The T dependence of the resistivity p
in B = 0 and Hall coefficient Ry in NasBi. Ry is measured
in B <2 T applied || . At 3 K, Ry corresponds to a density
n = 1.04 x 10" cm™3. The inset shows the contact labels and
the = and y axes fixed to the sample. Panel D: Curves of the
longitudinal magnetoresistance p..(B,T) at selected T from
4.5 to 300 K measured with B || x and I applied to (1,4).
The steep decrease in p..(B.,T) at 4.5 K reflects the onset
of the axial current in the lowest LL. Adapted from Xiong et



NTOI'U

YT1OP Ha:

KpaeBble 1 MOBEePXHOCTHbIEe COCTOAHUNA
NNPAKOBCKUX U BenneBCKNX dhepMmnMoHOB

e [padPeH — opurnHanbHble pesy/bTaThbl
e Tononormnyeckne N3onaTopbIl-0630p
e [lnpakoBCKME NoJTIyMeTas1/1bl-0630p

* BensneBcKkue nosiyMeTasi/1bl-0630p

e AKCMasZ1IbHasaA aHOMaJ1NA-0630p
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Sciencexpress
Observation of Fermi arc surface states in
a topological metal

Su-Yang Xu,"** Chang Liu,'* Satya K. Kushwaha,”’ Raman Sankar,*
Jason W. Krizan,® Ilya Belopolski,' Madhab Neupan,e' Guang
Bian,' Nasser Alidoust,' Tay-Rong Chang,” Horng-Tay Jeng,*®
Cheng-Yi Huang,” Wei-Feng Tsai,” Hsin Lin,” Pavel P. Shibayev,’
Fangcheng Chou,* Robert J. Cava,” M. Zahid Hasan"*}




Question: when a 3D Dirac point could be stabilized by space group
symmetries in the way that the honeycomb lattice of identical atoms
stabilizes graphene’s 2D Dirac point?

Effective Hamiltonian of a 2D Dirac point can be taken to be

H = kx!x + kyly, (1)
whose degeneracy is broken by a perturbation proportional to !z. The most direct
generalization of this to 3D is a Weyl point of two bands, such as

H = kx!x + kyly + kz!z. (2)

This is robust to perturbations, but that robustness results from a topological consideration
(a Chern number £1) which means that there cannot be only one Weyl point on the Fermi
surface as the total Chern number must be zero. In materials with both time-reversal and
inversion symmetry, Weyl points must come together in pairs and form 3D Dirac points; to
see this, note that time-reversal symmetry means that a Weyl point at k must be paired
with one at 'k with the same Chern number. A center of inversion pairs a Weyl point at k
with one with the opposite Chern number at 'k. Hence isolated Weyl points are forbidden
when both time-reversal and inversion are present. The Hamiltonian at a Dirac point is a 4
by 4 matrix as now four bands are involved. These Dirac points are not topologically
protected as their total Chern number is zero, and the question is whether they can be
protected by crystalline symmetries. The Dirac semimetals can be a starting point for other
states of matter, such as Weyl semimetals if the materials can be modified to break time-
reversal or inversion. The chief consequences discussed so far theoretically for Dirac and
Weyl semimetals, aside from the band structure probed by ARPES, are in transport.
Already transport experiments seeking to observe theoretically predicted anomalies are
underway and find high conductivity and large magnetoresistance in single-crystal Cd3As2



Two-band semiconductor with kp_ O : Dirac limit

P 4

Narrow-gap 2-band IV-VI or V rE
semiconductors (PbSnTe, PbSnSe or BiSb): \/
- p— \ /4
Hkpp I_Icv’ Ec Ev Egap (Egap |:>2mc2) \Y"7
/N
4 = \ 5 3 AN\ N
y \
Lo E.(0) Kkp, _ [ me cks |/ \
““\kp, E,(0) ck§ —mc?
\ ve v . g )
Dirac Hamiltonian Hy 4x4
for envelope spinor (C.4,C.;, C,1, C,1)
2 _ % X=X, accidental gapless
; A & o A% %//%%
. = i o state, is not symmetry
* i protected
0 X=0.4 1 X

Pb,Sn,  Te




Surface Quantum Hall Effect

Orbital QHE : E=0 Landau Level for Dirac fermions. “Fractional’ IQHE

) "2
B s e’ .
o, = J v=1 chiral edge stz
= 2h
Anomalous QHE : Induce a surface gap by depositing magnetic material
RSO e .
H,=y'(mivolV — u+A,,o0.)y 7
Mass due to Exchange field 7/

G..‘l_"l' = Sgn(ﬁmr)% i Oz

Tl

TEgap = 2124

Chiral Edge State at Domain Wall : Ay, <> —Ay,



Time Reversal Symmetry : [H.,0]=0

Anti Unitary time reversal operator : @/ = a=F .ﬁ'/f *
O’ =-1

Kramers’' Theorem: for spin 72 all eigenstates are at least 2 fold degenerate

Spin %z : @[W‘]:[ Vi

¥, -y ¥,

. 0| z)=c|x) v oo
Proof : for a non degenerate eigenstate > O ¢l =-1
@|z) el | 2)
Consequences for edge states :
States at “time reversal invariant momenta” - e
k*=0 and k*=n/a (=-n/a) are degenerate. i G
e «+«—— 1D "Dirac point”

The crossing of the edge states is protected, ) T It “‘x\\

even If spin conservation is volated.

Absence of backscattering, even for strong Vin B )
disorder. No Anderson localization DENNNEENNE "N ¢ —

LTy -
r=0 T invariant disorder lt|=1




Unique Properties of Topological Insulator Surface States
“Half’ an ordinary 2DEG ; V4 Graphene

Spin polarized Fermi surface

* Charge Current ~ Spin Density
* Spin Current ~ Charge Density

n Berry’s phase

* Robust to disorder
* Weak Antilocalization
* Impossible to localize, Klein paradox

Exotic States when broken symmetry leads to surface energy gap:
* Quantum Hall state, topological magnetoelectric effect
Fu, Kane '07; Qi, Hughes, Zhang '08, Essin, Moore, Vanderhilt ‘09

* Superconducting state
Fu, Kane '08



KoHuenuma TonosiIorm4eckoro n3ondaropa

Magnetic field —1

Buknneams: “Tononornvyeckni
n3onartop (TW) — ocobbin TuM
mMarepuana, KOTopbIn BHYTPU
o6bEMa npeacTaBnsaeT coboun
ON3MEKTPUK, a Ha NMOBEPXHOCTU
NPOBOAMUT 3MTIEKTPUYECKNN TOK”.

Energy

Valence band |

Momentum



(a)

Dirac point

\
>—C """ | Weyl line

node

The Dirac points and Weyl line nodes can exist simultaneously.



Experiments on HgCdTe quantum wells

Expt: Konig, Wiedmann, Brune, Roth, Buhmann, Molenkamp, Qi, Zhang Science 2007

— G=0.0162h '
: o' W Landauer Conductance G=2e%/h
normal band order /

conventional insulator
T=30mK 1 1'
=1 X

10°

Ri4.23 /82

10°

d> 6.3nm
inverted band order
QSH insulator

-=1.0 -0.5 ’ 0.0 l 0.5 ‘ 1.0
(Vg = Vind / V

Measured conductance 2e?/h independent of W for short samples (L<L;,)



: Theory. Predict Bi, ,.Sb_is a topological insulator by exploiting
B |_1 _be inversion symmetry of pure Bi, Sb (Fu,Kane PRL'O7)

Experiment: ARPES (Hsieh et al. Nature '08)

0.1 -
< * Bi,, Sb, is a Strong Topological
ﬁ-: 00 1 Insulator vg;(vy,v4,vs) = 1;(111)
ol * 5 surface state bands cross E;
between I"and M
Bl Se ARPES Experiment : Y. Xia et al., Nature Phys. (2009)
2 3 Band Theory : H. Zhang et. al, Nature Phys. (2009).

(v4,v2,v3) = 1;(000) : Band inversion at I'

* Energy gap: A ~ .3 eV : Aroom temperature
topological insulator

® Simple surface state structure :

Similar to graphene, except

k(A
Control E¢ on surface by only a single Dirac point
exposing to NO,




Elemental topological insulator a-Sn:
spin-charge conversion

Rojas-Sanchez et al
Arxiv: Sept 11-2015

E-Er (6V)

uSn|Ag43A

Spin to charge conversion
at room temperature

“By ARPES we first confirm that the Dirac cone at the surface of a-Sn (001)
layers subsists after covering with Ag”.



Weyl semimetals are a topological state of matter in

which the conduction and valence bands touch and linearly
disperse around pairs of Weyl nodes20,21. Each

node has a denite left or right handed chirality providing

a quantum number analogous to the valley degree

of freedom in graphene22. Dirac semimetals can be
thought of as two superimposed copies of Weyl semimetals
with the degeneracy protected by a crystal symmetry

from opening up a gap4,5,23{25. Similar to topological
insulators and their metallic surface, Dirac and Weyl
semimetals host protected surface states26

SS only exist for a restricted range of crystal

momenta, thereby forming a Fermi arc connecting a pair

of Weyl points with opposite chirality26,27. The chiral fermions describing the
low energy degrees

of freedom of Dirac and Weyl semimetals exhibit the chiral
anomaly28{30: while the sum of left and right handed
fermions is necessarily conserved, their dierence, the
chiral density, does not have to be, even if classically

it should. In fact, non-orthogonal magnetic and electric
elds pump left handed fermions into right handed,

or vice versa29{34.



Visualization of the chiral anomaly in Dirac and Weyl semimetals

(a) Weyl| semimetal {b) Weyl semimetal (c) Dirac semimetal (d) Dirac samimetal
E Cuts at constant probing energy  Chiral anomaly Superposilion of both isospins

—

(a) Spectrum of a Weyl semimetal with two bulk Weyl nodes of different chirality separated in momentum space. The grey plane
represents the SS at the top surface, occupied up to the equilibrium chemical potential Applying magnetic and electric fields results
in a steady state with left and right cone chemical potentials, linearly interpolated by a tilted Fermi arc.

(b) Two constant energy cuts (A and B) through the band structure, with occupied and empty SSs (solid light blue and white dashed
lines)

(c) Dirac semimetals host pairs of Weyl cones, each pair with isospin and both left and right chiralities, that respond to the chiral
anomaly in the opposite way. Two edge states with opposite velocities (light red and light blue planes), appear at each boundary of
the Dirac semimetal. Scattering processes are depicted by arrows.

(d) The two pairs of Weyl nodes in (c) together comprise a pair of Dirac nodes. At energy cuts (C and D) between L and R, both bulk
nodes are occupied while SSs are only partially occupied. The total occupation in these planes illustrated in the bottom panel.



